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Abstract

To a complex Hilbert space V one may associate a C∗-algebra called the “canonical anti-commutation rela-

tion” algebra CAR(V ). This algebra is, loosely speaking, the C∗-algebra generated by V , such that vw+wv = 0

for all v, w ∈ V , and such that unit vectors in V become unitary elements in CAR(V ). Alternatively, one can

consider the complex Hilbert space V ⊕ V ∗, which comes equipped with a canonical real structure. To such a

Hilbert space equipped with a real structure one may associate a Clifford algebra, Cl(V ⊕V ∗). The CAR algebra

CAR(V ) and the Clifford algebra Cl(V ) are well-studied objects that are widely understood to be “the same”.

The goal of this note is to make precise in which way they are the same.

1 Introduction

I make no claim to any originality in these notes; their purpose is to summarize some observations that are

probably well-known, but perhaps not easy to find in the literature. Things that are easy to find are explained

only summarily. An excellent account of infinite-dimensional Clifford algebras and their representations can be

found in [PR94]. For a definition of the CAR-algebra, a starting point might be [Ten17].

2 The CAR algebra and the Clifford algebra

Let V be a complex Hilbert space.

Definition 2.1. If A is a unital C∗-algebra and f : V → A is a map, then f is a CAR-map if f is linear, and

f(v)f(w) + f(w)f(v) = 0,

f(v)f(w)∗ + f(w)∗f(v) = ⟨v, w⟩1A,

for all v, w ∈ V . △
Definition 2.2. The canonical anti-commutation relation (CAR) algebra, CAR(V ), is the universal unital C∗-

algebra with respect to CAR-maps f : V → A. In other words, CAR(V ) comes equipped with an injective

CAR-map aV : V → CAR(V ), such that if f : V → A is any other CAR-map, then there exists a unique

∗-homomorphism f̃ : CAR(V ) → A such that f = f̃ ◦ aV . △
It is common to suppress the inclusion map aV : V → CAR(V ), we will do so only when there is no risk of

confusion.

Definition 2.3. A real structure on a complex Hilbert space H is a conjugate linear isometric involution α :

H → H. △
We write V ∗ for the complex-linear dual of V , and we write ι : V → V ∗ for the conjugate-linear isometric

isomorphism induced by the inner product of V . We write V̂ for the complex Hilbert space V ⊕ V ∗, equipped

with the real structure

αV =

(
0 ι∗

ι 0

)
.

Let H be a complex Hilbert space equipped with a real structure α.
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Remark 2.4. Throughout, our convention will be that V is a complex Hilbert space, without a given real

structure; while H is a complex Hilbert space with a given real structure α. If we write Ĥ, then we mean the

complex Hilbert space H ⊕H∗ with the real structure αH ; the original real structure α is not involved.

Moreover, our inner products are complex linear in the first entry, and conjugate linear in the second. △
Definition 2.5. If A is a unital C∗-algebra and f : H → A is a map, then f is a Clifford map if f is linear, and

f(v)f(w) + f(w)f(v) = ⟨v, α(w)⟩1A, f(α(v)) = f(v)∗,

for all v, w ∈ V . △
Definition 2.6. The Clifford algebra, Cl(H), is the universal unital C∗-algebra with respect to Clifford-maps

f : H → A. In other words, Cl(H) comes equipped with an injective Clifford map iH : H → Cl(H), such that

if f : H → A is any other Clifford map, then there exists a unique ∗-homomorphism f̃ : Cl(H) → A such that

f = f̃ ◦ iH . △
Again, it is common to suppress the inclusion map iH : H → Cl(H), we will do so only when there is no risk

of confusion.

Proposition 2.7. The inclusion map j : V → V̂ extends to an isomorphism of C∗-algebras u : CAR(V ) →
Cl(V̂ ).

Proof. First, observe that the map V
j−→ V̂

i
V̂−−→ Cl(V̂ ) is a CAR-map.

iV̂ j(v)iV̂ j(w) + iV̂ j(w)iV̂ j(v) = iV̂ (v, 0)iV̂ (w, 0) + iV̂ (w, 0)iV̂ (v, 0)

= ⟨(v, 0), αV (w, 0)⟩
= ⟨(v, 0), (0, ι(w))⟩1 = 0,

iV̂ j(v)iV̂ j(w)∗ + iV̂ j(w)∗iV̂ j(v) = iV̂ (v, 0)iV̂ (w, 0)∗ + iV̂ (w, 0)∗iV̂ (v, 0)

= iV̂ (v, 0)i(0, ι(w)) + iV̂ (0, ι(w))iV̂ (v, 0)

= ⟨(v, 0), (w, 0)⟩1 = ⟨v, w⟩1.

We thus obtain a ∗-homomorphism j̃ : CAR(V ) → Cl(V̂ ) such that j̃aV = iV̂ j. Let q : V̂ → CAR(V ) be the

map

q(v, ι(w)) = aV (v) + aV (w)∗.

The map q is a Clifford map, and thus extends to a ∗-homomorphism q̃ : Cl(V̂ ) → CAR(V ).

q(v, ι(w))q(x, ι(y))+q(x, ι(y))q(v, ι(w)) = (aV (v) + aV (w)∗)(aV (x) + aV (y)∗)

+ (aV (x) + aV (y)∗)(aV (v) + aV (w)∗)

=aV (v)aV (x) + aV (v)aV (y)∗ + aV (w)∗aV (x) + aV (w)∗aV (y)∗

+ aV (x)aV (v) + aV (x)aV (w)∗ + aV (y)∗aV (v) + aV (y)∗aV (w)∗

=aV (v)aV (y)∗ + aV (w)∗aV (x) + aV (x)aV (w)∗ + aV (y)∗aV (v)

=⟨v, y⟩1+ ⟨x,w⟩1
=⟨v, y⟩1+ ⟨ι(w), ι(x)⟩1
=⟨(v, ι(w)), (y, ι(x))⟩1
=⟨(v, ι(w)), α(x, ι(y))⟩1

q(v, ι(w))∗ = (aV (v) + aV (w)∗)∗ = aV (w) + aV (v)∗ = q(w, ι(v)) = q(α(v, ι(w))).
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We claim that q̃j̃ = 1 and j̃q̃ = 1. First, let v ∈ V be arbitrary. We then compute

q̃j̃aV (v) = q̃iV̂ j(v) = qj(v) = aV (v)

In other words, the map q̃j̃ is the extension of the map aV : V → CAR(V ) to CAR(V ), i.e. q̃j̃ = 1. Now, let

(v, ι(w)) ∈ V̂ be arbitrary. We compute

j̃q̃iV̂ (v, ι(w)) = j̃q(v, ι(w)) = j̃(aV (v) + aV (w)∗) = j̃(aV (v)) + j̃(aV (w))∗

= iV̂ j(v) + iV̂ j(w)∗ = iV̂ (v, 0) + iV̂ (0, ι(w)) = iV̂ (v, ι(w)).

Thus, j̃q̃ extends the map iV̂ : V̂ → Cl(V̂ ) to Cl(V̂ ), i.e. j̃q̃ = 1.

3 The Fock representations

Given a Hilbert space V , we write ΛV for the Hilbert space completion of the exterior algebra of V , i.e.

ΛV ..=
(
⊕∞

k=0 ∧k V
)⟨·,·⟩

.

Definition 3.1. A polarization W ⊆ V is simply a closed subspace. We write Pol(V ) for the set of polarizations

in V . A Lagrangian in H is a closed subspace L ⊂ H such that H = L⊕ α(L). We write Lag(H) for the set of

Lagrangians in H. △
Given a polarization W ∈ Pol(V ), we obtain a Lagrangian LW = W ⊕ (W⊥)∗ ∈ Lag(V̂ ). The assignment

L• : Pol(V ) → Lag(V̂ ) is injective, but far from surjective. Indeed, if T : V → V is a skew-adjoint, conjugate-

linear map, then graph(ιT ) is a Lagrangian.

To see this, pick v, w ∈ V arbitrary, and compute

⟨(v, ιTv), (Tw, ιw)⟩ = ⟨v, Tw⟩+ ⟨ιTv, ιw⟩ = ⟨v, Tw⟩+ ⟨w, Tv⟩ = ⟨v, Tw⟩ − ⟨v, Tw⟩ = 0.

This proves that graph(ιT ) ⊆ α(graph(ιT ))⊥. On the other hand, suppose that (x, y) ∈ α(graph(ιT ))⊥ ⊂
V ⊕ V ∗. We then have

0 = ⟨(Tw, ιw), (x, y)⟩ = ⟨Tw, x⟩+ ⟨ιw, y⟩ = −⟨Tx,w⟩+ ⟨ι∗y, w⟩ = ⟨ι∗y − Tx,w⟩.

Because this must hold for all w ∈ V , we have ι∗y − Tx = 0, or in other words y = ιTx, and thus

(x, y) = (x, ιTx) ∈ graph(ιT ).

If T is not the zero map, then graph(ιT ) is not in the image of L•.

Let L ⊂ H be a Lagrangian. If v ∈ L, we write v ∧ • for the bounded operator ΛL → ΛL, f 7→ v ∧ f . If

w ∈ α(L), we write b(w) for the complex-linear extension of the map

∧n+1L → ∧nL : l0 ∧ ... ∧ ln 7→
n∑

k=0

(−1)k⟨lk, α(w)⟩l0 ∧ ... ∧ l̂k ∧ ... ∧ ln

The map

ρL : H = L⊕ α(L) → B(ΛL),
(v, w) 7→ v ∧ •+ b(w)

is a Clifford map, and thus extends to ∗-homomorphism ρL : Cl(H) → ΛL. The map ρL is the Fock representation

of Cl(H) with respect to L.

Let W ⊆ V be a polarization we then obtain a Lagrangian LW
..= W ⊕ (W⊥)∗ ⊂ V̂ , and thus a corre-

sponding Fock representation ρLW : Cl(V̂ ) → B(ΛLW ). Pre-composition with the ∗-isomorphism u thus yields

a representation ρLW u : CAR(V ) → B(ΛLW ).
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A representation πW CAR(V ) → B(ΛLW ) can also be constructed directly as follows. First, observe that

ΛLW = ΛW ⊗ Λ(W⊥)∗. If w ∈ W⊥, then we write c(w) for the complex-linear extension of the map

∧n+1(W⊥)∗ → ∧n(W⊥)∗,

f0 ∧ ... ∧ fn 7→
n∑

k=0

(−1)kfk(w)f0 ∧ ... ∧ f̂k ∧ ... ∧ fn

The map

πW : V = W ⊕W⊥ → B(ΛW ⊗ Λ(W⊥)∗),

(v, w) 7→ (v ∧ •)⊗ 1+ 1⊗ c(w)

is then a CAR-map, whence it extends to a ∗-homomorphism πW : CAR(V ) → B(ΛLW ).

Proposition 3.2. πW = ρLW u

Proof. Let (v, w) ∈ W ⊕W⊥ = V be arbitrary. We then have j(v, w) = ((v, 0), (0, w)) ∈ (W ⊕ (W⊥)∗)⊕ (W ∗ ⊕
W⊥) = LW ⊕α(LW ) = V̂ . The map u is the (unique) extension of the map iV̂ j : V → Cl(V̂ ). We then compute

ρLW j(v, w) = ρLW ((v, 0), (0, w)) = v ∧ •+ b(0, w)

We claim that 1 ⊗ c(w) = b(0, w) for all w ∈ W⊥. Indeed, let y = x ⊗ f0 ∧ ... ∧ fn ∈ ΛW ⊗ ∧n+1(W⊥)∗ be

arbitrary, we then have

b(0, w)(y) = x⊗
n∑

k=0

(−1)k⟨fk, α(0, w)⟩f0 ∧ ... ∧ f̂k ∧ ... ∧ fn

= x⊗
n∑

k=0

(−1)k⟨fk, ι(w)⟩f0 ∧ ... ∧ f̂k ∧ ... ∧ fn

= x⊗
n∑

k=0

(−1)kfk(w)f0 ∧ ... ∧ f̂k ∧ ... ∧ fn

= (1⊗ c(w))(y)

We thus see that πW (v, w) = ρLW u(v, w) for all (v, w) ∈ W ⊕ W⊥. This implies that this identity must also

hold on all of CAR(V ).

Remark 3.3. As before, we consider a complex Hilbert space H with real structure α. Let L ∈ Lag(H).

Implicit in the definition of the Fock representation of Cl(H) on ΛL is the identification of α(L) with L∗

through the (complex-linear) map α(L) → L∗, w 7→ ⟨•, α(w)⟩. In fact, this identification allows us to identify

H with L̂ (as complex Hilbert spaces with real structures). Proposition 2.7 then tells us that the inclusion

L → H extends to an isomorphism of C∗-algebras u : CAR(L) → Cl(H). We now define the ∗-isomorphism

sL : CAR(H) → Cl(H)⊗ Cl(H∗) to be the composition of the following ∗-isomorphisms:

CAR(H) = CAR(L⊕ α(L)) → CAR(L)⊗ CAR(L∗) → Cl(H)⊗ Cl(H∗).

It should be emphasized that the construction of sL required the choice of a Lagrangian L ∈ Lag(H); moreover,

different choices of Lagrangians lead to different isomorphisms. Let πL
L : CAR(L) → B(ΛL) be the Fock

representation of CAR(L) with respect to L ∈ Pol(L), and let πH
L be the Fock representation of CAR(H) with

respect to L ∈ Pol(H). As a corollary of Proposition 3.2 the map u : CAR(L) → Cl(H) satisfies πL
L = ρLu,

which in turn implies that πH
L = (ρL ⊗ ρL∗)sL. △
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