A unified approach to spinors in Hilbert space

Peter Kristel

Abstract

To a complex Hilbert space V one may associate a C^{*}-algebra called the "canonical anti-commutation relation" algebra CAR (V). This algebra is, loosely speaking, the C^{*}-algebra generated by V, such that $v w+w v=0$ for all $v, w \in V$, and such that unit vectors in V become unitary elements in $\operatorname{CAR}(V)$. Alternatively, one can consider the complex Hilbert space $V \oplus V^{*}$, which comes equipped with a canonical real structure. To such a Hilbert space equipped with a real structure one may associate a Clifford algebra, $\mathrm{Cl}\left(V \oplus V^{*}\right)$. The CAR algebra $\operatorname{CAR}(V)$ and the Clifford algebra $\mathrm{Cl}(V)$ are well-studied objects that are widely understood to be "the same". The goal of this note is to make precise in which way they are the same.

1 Introduction

I make no claim to any originality in these notes; their purpose is to summarize some observations that are probably well-known, but perhaps not easy to find in the literature. Things that are easy to find are explained only summarily. An excellent account of infinite-dimensional Clifford algebras and their representations can be found in [PR94]. For a definition of the CAR-algebra, a starting point might be [Ten17].

2 The CAR algebra and the Clifford algebra

Let V be a complex Hilbert space.
Definition 2.1. If A is a unital C^{*}-algebra and $f: V \rightarrow A$ is a map, then f is a $C A R$-map if f is linear, and

$$
\begin{aligned}
f(v) f(w)+f(w) f(v) & =0 \\
f(v) f(w)^{*}+f(w)^{*} f(v) & =\langle v, w\rangle \mathbb{1}_{A}
\end{aligned}
$$

for all $v, w \in V$.
Definition 2.2. The canonical anti-commutation relation (CAR) algebra, $\mathrm{CAR}(V)$, is the universal unital C^{*} algebra with respect to CAR-maps $f: V \rightarrow A$. In other words, $\operatorname{CAR}(V)$ comes equipped with an injective CAR-map $a_{V}: V \rightarrow \operatorname{CAR}(V)$, such that if $f: V \rightarrow A$ is any other CAR-map, then there exists a unique *-homomorphism $\tilde{f}: \operatorname{CAR}(V) \rightarrow A$ such that $f=\tilde{f} \circ a_{V}$.

It is common to suppress the inclusion map $a_{V}: V \rightarrow \operatorname{CAR}(V)$, we will do so only when there is no risk of confusion.

Definition 2.3. A real structure on a complex Hilbert space H is a conjugate linear isometric involution α : $H \rightarrow H$.

We write V^{*} for the complex-linear dual of V, and we write $\iota: V \rightarrow V^{*}$ for the conjugate-linear isometric isomorphism induced by the inner product of V. We write \widehat{V} for the complex Hilbert space $V \oplus V^{*}$, equipped with the real structure

$$
\alpha_{V}=\left(\begin{array}{cc}
0 & \iota^{*} \\
\iota & 0
\end{array}\right)
$$

Let H be a complex Hilbert space equipped with a real structure α.

Remark 2.4. Throughout, our convention will be that V is a complex Hilbert space, without a given real structure; while H is a complex Hilbert space with a given real structure α. If we write \widehat{H}, then we mean the complex Hilbert space $H \oplus H^{*}$ with the real structure α_{H}; the original real structure α is not involved.

Moreover, our inner products are complex linear in the first entry, and conjugate linear in the second. \triangle
Definition 2.5. If A is a unital C^{*}-algebra and $f: H \rightarrow A$ is a map, then f is a Clifford map if f is linear, and

$$
f(v) f(w)+f(w) f(v)=\langle v, \alpha(w)\rangle \mathbb{1}_{A}, \quad f(\alpha(v))=f(v)^{*},
$$

for all $v, w \in V$.
Definition 2.6. The Clifford algebra, $\mathrm{Cl}(H)$, is the universal unital C^{*}-algebra with respect to Clifford-maps $f: H \rightarrow A$. In other words, $\mathrm{Cl}(H)$ comes equipped with an injective Clifford map $i_{H}: H \rightarrow \mathrm{Cl}(H)$, such that if $f: H \rightarrow A$ is any other Clifford map, then there exists a unique $*$-homomorphism $\tilde{f}: \mathrm{Cl}(H) \rightarrow A$ such that $f=\tilde{f} \circ i_{H}$.

Again, it is common to suppress the inclusion map $i_{H}: H \rightarrow \mathrm{Cl}(H)$, we will do so only when there is no risk of confusion.

Proposition 2.7. The inclusion map $j: V \rightarrow \widehat{V}$ extends to an isomorphism of C^{*}-algebras $u: \operatorname{CAR}(V) \rightarrow$ $\mathrm{Cl}(\widehat{V})$.

Proof. First, observe that the map $V \xrightarrow{j} \widehat{V} \xrightarrow{i \widehat{V}} \mathrm{Cl}(\widehat{V})$ is a CAR-map.

$$
\begin{aligned}
i_{\widehat{V}} j(v) i_{\widehat{V}} j(w)+i_{\widehat{V}} j(w) i_{\widehat{V}} j(v) & =i_{\widehat{V}}(v, 0) i_{\widehat{V}}(w, 0)+i_{\widehat{V}}(w, 0) i_{\widehat{V}}(v, 0) \\
& =\left\langle(v, 0), \alpha_{V}(w, 0)\right\rangle \\
& =\langle(v, 0),(0, \iota(w))\rangle \mathbb{1}=0, \\
i_{\widehat{V}} j(v) i_{\widehat{V}} j(w)^{*}+i_{\widehat{V}} j(w)^{*} i_{\widehat{V}} j(v) & =i_{\widehat{V}}(v, 0) i_{\widehat{V}}(w, 0)^{*}+i_{\widehat{V}}(w, 0)^{*} i_{\widehat{V}}(v, 0) \\
& =i_{\widehat{V}}(v, 0) i(0, \iota(w))+i_{\widehat{V}}(0, \iota(w)) i_{\widehat{V}}(v, 0) \\
& =\langle(v, 0),(w, 0)\rangle \mathbb{1}=\langle v, w\rangle \mathbb{1} .
\end{aligned}
$$

We thus obtain a $*$-homomorphism $\tilde{j}: \operatorname{CAR}(V) \rightarrow \operatorname{Cl}(\widehat{V})$ such that $\tilde{j} a_{V}=i_{\widehat{V}} j$. Let $q: \widehat{V} \rightarrow \operatorname{CAR}(V)$ be the map

$$
q(v, \iota(w))=a_{V}(v)+a_{V}(w)^{*}
$$

The $\operatorname{map} q$ is a Clifford map, and thus extends to a $*$-homomorphism $\tilde{q}: \operatorname{Cl}(\widehat{V}) \rightarrow \operatorname{CAR}(V)$.

$$
\begin{aligned}
& q(v, \iota(w)) q(x, \iota(y))+ q(x, \iota(y)) q(v, \iota(w))=\left(a_{V}(v)+a_{V}(w)^{*}\right)\left(a_{V}(x)+a_{V}(y)^{*}\right) \\
&+\left(a_{V}(x)+a_{V}(y)^{*}\right)\left(a_{V}(v)+a_{V}(w)^{*}\right) \\
&=a_{V}(v) a_{V}(x)+a_{V}(v) a_{V}(y)^{*}+a_{V}(w)^{*} a_{V}(x)+a_{V}(w)^{*} a_{V}(y)^{*} \\
&+a_{V}(x) a_{V}(v)+a_{V}(x) a_{V}(w)^{*}+a_{V}(y)^{*} a_{V}(v)+a_{V}(y)^{*} a_{V}(w)^{*} \\
&= a_{V}(v) a_{V}(y)^{*}+a_{V}(w)^{*} a_{V}(x)+a_{V}(x) a_{V}(w)^{*}+a_{V}(y)^{*} a_{V}(v) \\
&=\langle v, y\rangle \mathbb{1}+\langle x, w\rangle \mathbb{1} \\
&==\langle v, y\rangle \mathbb{1}+\langle\iota(w), \iota(x)\rangle \mathbb{1} \\
&==\langle(v, \iota(w)),(y, \iota(x))\rangle \mathbb{1} \\
&==\langle(v, \iota(w)), \alpha(x, \iota(y))\rangle \mathbb{1}
\end{aligned}
$$

$$
q(v, \iota(w))^{*}=\left(a_{V}(v)+a_{V}(w)^{*}\right)^{*}=a_{V}(w)+a_{V}(v)^{*}=q(w, \iota(v))=q(\alpha(v, \iota(w))) .
$$

We claim that $\tilde{q} \tilde{j}=\mathbb{1}$ and $\tilde{j} \tilde{q}=\mathbb{1}$. First, let $v \in V$ be arbitrary. We then compute

$$
\tilde{q} \tilde{j} a_{V}(v)=\tilde{q} i_{\widehat{V}} j(v)=q j(v)=a_{V}(v)
$$

In other words, the map $\tilde{q} \tilde{j}$ is the extension of the map $a_{V}: V \rightarrow \operatorname{CAR}(V)$ to $\operatorname{CAR}(V)$, i.e. $\tilde{q} \tilde{j}=\mathbb{1}$. Now, let $(v, \iota(w)) \in \widehat{V}$ be arbitrary. We compute

$$
\begin{aligned}
\tilde{j} \tilde{q} i_{\widehat{V}}(v, \iota(w)) & =\tilde{j} q(v, \iota(w))=\tilde{j}\left(a_{V}(v)+a_{V}(w)^{*}\right)=\tilde{j}\left(a_{V}(v)\right)+\tilde{j}\left(a_{V}(w)\right)^{*} \\
& =i_{\widehat{V}} j(v)+i_{\widehat{V}} j(w)^{*}=i_{\widehat{V}}(v, 0)+i_{\widehat{V}}(0, \iota(w))=i_{\widehat{V}}(v, \iota(w)) .
\end{aligned}
$$

Thus, $\tilde{j} \tilde{q}$ extends the map $i_{\widehat{V}}: \widehat{V} \rightarrow \operatorname{Cl}(\widehat{V})$ to $\operatorname{Cl}(\widehat{V})$, i.e. $\tilde{j} \tilde{q}=\mathbb{1}$.

3 The Fock representations

Given a Hilbert space V, we write ΛV for the Hilbert space completion of the exterior algebra of V, i.e.

$$
\Lambda V:=\left(\oplus_{k=0}^{\infty} \wedge^{k} V\right)^{\langle\cdot, \cdot\rangle}
$$

Definition 3.1. A polarization $W \subseteq V$ is simply a closed subspace. We write $\operatorname{Pol}(V)$ for the set of polarizations in V. A Lagrangian in H is a closed subspace $L \subset H$ such that $H=L \oplus \alpha(L)$. We write $\operatorname{Lag}(H)$ for the set of Lagrangians in H.

Given a polarization $W \in \operatorname{Pol}(V)$, we obtain a Lagrangian $L_{W}=W \oplus\left(W^{\perp}\right)^{*} \in \operatorname{Lag}(\widehat{V})$. The assignment $L_{\bullet}: \operatorname{Pol}(V) \rightarrow \operatorname{Lag}(\widehat{V})$ is injective, but far from surjective. Indeed, if $T: V \rightarrow V$ is a skew-adjoint, conjugatelinear map, then $\operatorname{graph}(\iota T)$ is a Lagrangian.

To see this, pick $v, w \in V$ arbitrary, and compute

$$
\langle(v, \iota T v),(T w, \iota w)\rangle=\langle v, T w\rangle+\langle\iota T v, \iota w\rangle=\langle v, T w\rangle+\langle w, T v\rangle=\langle v, T w\rangle-\langle v, T w\rangle=0 .
$$

This proves that graph $(\iota T) \subseteq \alpha(\operatorname{graph}(\iota T))^{\perp}$. On the other hand, suppose that $(x, y) \in \alpha(\operatorname{graph}(\iota T))^{\perp} \subset$ $V \oplus V^{*}$. We then have

$$
0=\langle(T w, \iota w),(x, y)\rangle=\langle T w, x\rangle+\langle\iota w, y\rangle=-\langle T x, w\rangle+\left\langle\iota^{*} y, w\right\rangle=\left\langle\iota^{*} y-T x, w\right\rangle .
$$

Because this must hold for all $w \in V$, we have $\iota^{*} y-T x=0$, or in other words $y=\iota T x$, and thus $(x, y)=(x, \iota T x) \in \operatorname{graph}(\iota T)$.
If T is not the zero map, then $\operatorname{graph}(\iota T)$ is not in the image of L_{\bullet}.
Let $L \subset H$ be a Lagrangian. If $v \in L$, we write $v \wedge \bullet$ for the bounded operator $\Lambda L \rightarrow \Lambda L, f \mapsto v \wedge f$. If $w \in \alpha(L)$, we write $b(w)$ for the complex-linear extension of the map

$$
\wedge^{n+1} L \rightarrow \wedge^{n} L: l_{0} \wedge \ldots \wedge l_{n} \mapsto \sum_{k=0}^{n}(-1)^{k}\left\langle l_{k}, \alpha(w)\right\rangle l_{0} \wedge \ldots \wedge \widehat{l_{k}} \wedge \ldots \wedge l_{n}
$$

The map

$$
\begin{aligned}
\rho_{L}: H=L \oplus \alpha(L) & \rightarrow \mathcal{B}(\Lambda L), \\
(v, w) & \mapsto v \wedge \bullet+b(w)
\end{aligned}
$$

is a Clifford map, and thus extends to $*$-homomorphism $\rho_{L}: \mathrm{Cl}(H) \rightarrow \Lambda L$. The map ρ_{L} is the Fock representation of $\mathrm{Cl}(H)$ with respect to L.

Let $W \subseteq V$ be a polarization we then obtain a Lagrangian $L_{W}:=W \oplus\left(W^{\perp}\right)^{*} \subset \widehat{V}$, and thus a corresponding Fock representation $\rho_{L_{W}}: \operatorname{Cl}(\widehat{V}) \rightarrow \mathcal{B}\left(\Lambda L_{W}\right)$. Pre-composition with the $*$-isomorphism u thus yields a representation $\rho_{L_{W}} u: \operatorname{CAR}(V) \rightarrow \mathcal{B}\left(\Lambda L_{W}\right)$.

A representation $\pi_{W} \operatorname{CAR}(V) \rightarrow \mathcal{B}\left(\Lambda L_{W}\right)$ can also be constructed directly as follows. First, observe that $\Lambda L_{W}=\Lambda W \otimes \Lambda\left(W^{\perp}\right)^{*}$. If $w \in W^{\perp}$, then we write $c(w)$ for the complex-linear extension of the map

$$
\begin{aligned}
\wedge^{n+1}\left(W^{\perp}\right)^{*} & \rightarrow \wedge^{n}\left(W^{\perp}\right)^{*} \\
f_{0} \wedge \ldots \wedge f_{n} & \mapsto \sum_{k=0}^{n}(-1)^{k} f_{k}(w) f_{0} \wedge \ldots \wedge \widehat{f_{k}} \wedge \ldots \wedge f_{n}
\end{aligned}
$$

The map

$$
\begin{aligned}
\pi_{W}: V=W \oplus W^{\perp} & \rightarrow \mathcal{B}\left(\Lambda W \otimes \Lambda\left(W^{\perp}\right)^{*}\right), \\
(v, w) & \mapsto(v \wedge \bullet) \otimes \mathbb{1}+\mathbb{1} \otimes c(w)
\end{aligned}
$$

is then a CAR-map, whence it extends to a $*$-homomorphism $\pi_{W}: \operatorname{CAR}(V) \rightarrow \mathcal{B}\left(\Lambda L_{W}\right)$.
Proposition 3.2. $\pi_{W}=\rho_{L_{W}} u$
Proof. Let $(v, w) \in W \oplus W^{\perp}=V$ be arbitrary. We then have $j(v, w)=((v, 0),(0, w)) \in\left(W \oplus\left(W^{\perp}\right)^{*}\right) \oplus\left(W^{*} \oplus\right.$ $\left.W^{\perp}\right)=L_{W} \oplus \alpha\left(L_{W}\right)=\widehat{V}$. The map u is the (unique) extension of the map $i_{\widehat{V}} j: V \rightarrow \mathrm{Cl}(\widehat{V})$. We then compute

$$
\rho_{L_{W}} j(v, w)=\rho_{L_{W}}((v, 0),(0, w))=v \wedge \bullet+b(0, w)
$$

We claim that $\mathbb{1} \otimes c(w)=b(0, w)$ for all $w \in W^{\perp}$. Indeed, let $y=x \otimes f_{0} \wedge \ldots \wedge f_{n} \in \Lambda W \otimes \wedge^{n+1}\left(W^{\perp}\right)^{*}$ be arbitrary, we then have

$$
\begin{aligned}
b(0, w)(y) & =x \otimes \sum_{k=0}^{n}(-1)^{k}\left\langle f_{k}, \alpha(0, w)\right\rangle f_{0} \wedge \ldots \wedge \widehat{f_{k}} \wedge \ldots \wedge f_{n} \\
& =x \otimes \sum_{k=0}^{n}(-1)^{k}\left\langle f_{k}, \iota(w)\right\rangle f_{0} \wedge \ldots \wedge \widehat{f_{k}} \wedge \ldots \wedge f_{n} \\
& =x \otimes \sum_{k=0}^{n}(-1)^{k} f_{k}(w) f_{0} \wedge \ldots \wedge \widehat{f_{k}} \wedge \ldots \wedge f_{n} \\
& =(\mathbb{1} \otimes c(w))(y)
\end{aligned}
$$

We thus see that $\pi_{W}(v, w)=\rho_{L_{W}} u(v, w)$ for all $(v, w) \in W \oplus W^{\perp}$. This implies that this identity must also hold on all of $\operatorname{CAR}(V)$.

Remark 3.3. As before, we consider a complex Hilbert space H with real structure α. Let $L \in \operatorname{Lag}(H)$. Implicit in the definition of the Fock representation of $\mathrm{Cl}(H)$ on ΛL is the identification of $\alpha(L)$ with L^{*} through the (complex-linear) map $\alpha(L) \rightarrow L^{*}, w \mapsto\langle\bullet, \alpha(w)\rangle$. In fact, this identification allows us to identify H with \widehat{L} (as complex Hilbert spaces with real structures). Proposition 2.7 then tells us that the inclusion $L \rightarrow H$ extends to an isomorphism of C^{*}-algebras $u: \operatorname{CAR}(L) \rightarrow \mathrm{Cl}(H)$. We now define the $*$-isomorphism $s_{L}: \mathrm{CAR}(H) \rightarrow \mathrm{Cl}(H) \otimes \mathrm{Cl}\left(H^{*}\right)$ to be the composition of the following $*$-isomorphisms:

$$
\operatorname{CAR}(H)=\operatorname{CAR}(L \oplus \alpha(L)) \rightarrow \operatorname{CAR}(L) \otimes \operatorname{CAR}\left(L^{*}\right) \rightarrow \mathrm{Cl}(H) \otimes \mathrm{Cl}\left(H^{*}\right)
$$

It should be emphasized that the construction of s_{L} required the choice of a Lagrangian $L \in \operatorname{Lag}(H)$; moreover, different choices of Lagrangians lead to different isomorphisms. Let $\pi_{L}^{L}: \operatorname{CAR}(L) \rightarrow \mathcal{B}(\Lambda L)$ be the Fock representation of $\operatorname{CAR}(L)$ with respect to $L \in \operatorname{Pol}(L)$, and let π_{L}^{H} be the Fock representation of $\operatorname{CAR}(H)$ with respect to $L \in \operatorname{Pol}(H)$. As a corollary of Proposition 3.2 the map $u: \operatorname{CAR}(L) \rightarrow \operatorname{Cl}(H)$ satisfies $\pi_{L}^{L}=\rho_{L} u$, which in turn implies that $\pi_{L}^{H}=\left(\rho_{L} \otimes \rho_{L^{*}}\right) s_{L}$.

References

[PR94] R. J. Plymen and P. L. Robinson. Spinors in Hilbert Space, volume 114 of Cambridge Tracts in Mathematics. 1994.
[Ten17] James E. Tener. "Construction of the unitary free fermion Segal CFT". Commun. Math. Phys., 355(2):463-518, 2017. arXiv: 1608.02095. http://arxiv.org/abs/1608.02095, doi:10.1007/ s00220-017-2959-x.

