A unified approach to spinors in Hilbert space

Peter Kristel

Abstract

To a complex Hilbert space V one may associate a C*-algebra called the "canonical anti-commutation relation" algebra CAR(V). This algebra is, loosely speaking, the C*-algebra generated by V, such that vw + wv = 0for all $v, w \in V$, and such that unit vectors in V become unitary elements in CAR(V). Alternatively, one can consider the complex Hilbert space $V \oplus V^*$, which comes equipped with a canonical real structure. To such a Hilbert space equipped with a real structure one may associate a Clifford algebra, $Cl(V \oplus V^*)$. The CAR algebra CAR(V) and the Clifford algebra Cl(V) are well-studied objects that are widely understood to be "the same". The goal of this note is to make precise in which way they are the same.

1 Introduction

I make no claim to any originality in these notes; their purpose is to summarize some observations that are probably well-known, but perhaps not easy to find in the literature. Things that are easy to find are explained only summarily. An excellent account of infinite-dimensional Clifford algebras and their representations can be found in [PR94]. For a definition of the CAR-algebra, a starting point might be [Ten17].

2 The CAR algebra and the Clifford algebra

Let V be a complex Hilbert space.

Definition 2.1. If A is a unital C^{*}-algebra and $f: V \to A$ is a map, then f is a CAR-map if f is linear, and

$$f(v)f(w) + f(w)f(v) = 0,$$

$$f(v)f(w)^* + f(w)^*f(v) = \langle v, w \rangle \mathbb{1}_A,$$

for all $v, w \in V$.

Definition 2.2. The canonical anti-commutation relation (CAR) algebra, CAR(V), is the universal unital C*algebra with respect to CAR-maps $f: V \to A$. In other words, CAR(V) comes equipped with an injective CAR-map $a_V: V \to CAR(V)$, such that if $f: V \to A$ is any other CAR-map, then there exists a unique *-homomorphism $\tilde{f}: CAR(V) \to A$ such that $f = \tilde{f} \circ a_V$.

It is common to suppress the inclusion map $a_V : V \to CAR(V)$, we will do so only when there is no risk of confusion.

Definition 2.3. A real structure on a complex Hilbert space H is a conjugate linear isometric involution α : $H \to H$.

We write V^* for the complex-linear dual of V, and we write $\iota : V \to V^*$ for the conjugate-linear isometric isomorphism induced by the inner product of V. We write \hat{V} for the complex Hilbert space $V \oplus V^*$, equipped with the real structure

$$\alpha_V = \begin{pmatrix} 0 & \iota^* \\ \iota & 0 \end{pmatrix}.$$

Let H be a complex Hilbert space equipped with a real structure α .

 \triangle

Remark 2.4. Throughout, our convention will be that V is a complex Hilbert space, without a given real structure; while H is a complex Hilbert space with a given real structure α . If we write \hat{H} , then we mean the complex Hilbert space $H \oplus H^*$ with the real structure α_H ; the original real structure α is not involved.

Moreover, our inner products are complex linear in the first entry, and conjugate linear in the second. \triangle **Definition 2.5.** If A is a unital C*-algebra and $f: H \to A$ is a map, then f is a *Clifford map* if f is linear, and

$$f(v)f(w) + f(w)f(v) = \langle v, \alpha(w) \rangle \mathbb{1}_A, \qquad \qquad f(\alpha(v)) = f(v)^*$$

 \triangle

for all $v, w \in V$.

Definition 2.6. The *Clifford algebra*, Cl(H), is the universal unital C*-algebra with respect to Clifford-maps $f: H \to A$. In other words, Cl(H) comes equipped with an injective Clifford map $i_H: H \to Cl(H)$, such that if $f: H \to A$ is any other Clifford map, then there exists a unique *-homomorphism $\tilde{f}: Cl(H) \to A$ such that $f = \tilde{f} \circ i_H$.

Again, it is common to suppress the inclusion map $i_H : H \to Cl(H)$, we will do so only when there is no risk of confusion.

Proposition 2.7. The inclusion map $j: V \to \hat{V}$ extends to an isomorphism of C^* -algebras $u: CAR(V) \to Cl(\hat{V})$.

Proof. First, observe that the map $V \xrightarrow{j} \widehat{V} \xrightarrow{i_{\widehat{V}}} \operatorname{Cl}(\widehat{V})$ is a CAR-map.

$$\begin{split} i_{\widehat{V}}j(v)i_{\widehat{V}}j(w) + i_{\widehat{V}}j(w)i_{\widehat{V}}j(v) &= i_{\widehat{V}}(v,0)i_{\widehat{V}}(w,0) + i_{\widehat{V}}(w,0)i_{\widehat{V}}(v,0) \\ &= \langle (v,0), \alpha_V(w,0) \rangle \\ &= \langle (v,0), (0,\iota(w)) \rangle \mathbb{1} = 0, \end{split}$$

$$\begin{split} i_{\widehat{V}}j(v)i_{\widehat{V}}j(w)^* + i_{\widehat{V}}j(w)^*i_{\widehat{V}}j(v) &= i_{\widehat{V}}(v,0)i_{\widehat{V}}(w,0)^* + i_{\widehat{V}}(w,0)^*i_{\widehat{V}}(v,0) \\ &= i_{\widehat{V}}(v,0)i(0,\iota(w)) + i_{\widehat{V}}(0,\iota(w))i_{\widehat{V}}(v,0) \\ &= \langle (v,0), (w,0)\rangle \mathbb{1} = \langle v,w\rangle \mathbb{1}. \end{split}$$

We thus obtain a *-homomorphism $\tilde{j} : \operatorname{CAR}(V) \to \operatorname{Cl}(\hat{V})$ such that $\tilde{j}a_V = i_{\hat{V}}j$. Let $q : \hat{V} \to \operatorname{CAR}(V)$ be the map

$$q(v,\iota(w)) = a_V(v) + a_V(w)^*.$$

The map q is a Clifford map, and thus extends to a *-homomorphism $\tilde{q} : \operatorname{Cl}(\hat{V}) \to \operatorname{CAR}(V)$.

$$\begin{split} q(v,\iota(w))q(x,\iota(y))+q(x,\iota(y))q(v,\iota(w)) &= (a_V(v)+a_V(w)^*)(a_V(x)+a_V(y)^*) \\ &+ (a_V(x)+a_V(y)^*)(a_V(v)+a_V(w)^*) \\ &= a_V(v)a_V(x)+a_V(v)a_V(y)^*+a_V(w)^*a_V(x)+a_V(w)^*a_V(y)^* \\ &+ a_V(x)a_V(v)+a_V(x)a_V(w)^*+a_V(y)^*a_V(v)+a_V(y)^*a_V(w)^* \\ &= a_V(v)a_V(y)^*+a_V(w)^*a_V(x)+a_V(x)a_V(w)^*+a_V(y)^*a_V(v) \\ &= \langle v, y \rangle \mathbb{1} + \langle x, w \rangle \mathbb{1} \\ &= \langle v, y \rangle \mathbb{1} + \langle \iota(w), \iota(x) \rangle \mathbb{1} \\ &= \langle (v,\iota(w)), (y,\iota(x)) \rangle \mathbb{1} \end{split}$$

$$q(v,\iota(w))^* = (a_V(v) + a_V(w)^*)^* = a_V(w) + a_V(v)^* = q(w,\iota(v)) = q(\alpha(v,\iota(w))).$$

We claim that $\tilde{q}\tilde{j} = \mathbb{1}$ and $\tilde{j}\tilde{q} = \mathbb{1}$. First, let $v \in V$ be arbitrary. We then compute

$$\tilde{q}\tilde{j}a_V(v) = \tilde{q}i_{\hat{V}}j(v) = qj(v) = a_V(v)$$

In other words, the map $\tilde{q}\tilde{j}$ is the extension of the map $a_V: V \to \text{CAR}(V)$ to CAR(V), i.e. $\tilde{q}\tilde{j} = \mathbb{1}$. Now, let $(v, \iota(w)) \in \hat{V}$ be arbitrary. We compute

$$\bar{j}\tilde{q}i_{\hat{V}}(v,\iota(w)) = \bar{j}q(v,\iota(w)) = \bar{j}(a_V(v) + a_V(w)^*) = \bar{j}(a_V(v)) + \bar{j}(a_V(w))^* \\
= i_{\hat{V}}j(v) + i_{\hat{V}}j(w)^* = i_{\hat{V}}(v,0) + i_{\hat{V}}(0,\iota(w)) = i_{\hat{V}}(v,\iota(w)).$$

Thus, $\tilde{j}\tilde{q}$ extends the map $i_{\hat{V}}: \hat{V} \to \operatorname{Cl}(\hat{V})$ to $\operatorname{Cl}(\hat{V})$, i.e. $\tilde{j}\tilde{q} = \mathbb{1}$.

3 The Fock representations

Given a Hilbert space V, we write ΛV for the Hilbert space completion of the exterior algebra of V, i.e.

$$\Lambda V := \left(\bigoplus_{k=0}^{\infty} \wedge^{k} V \right)^{\langle \cdot, \cdot \rangle}$$

Definition 3.1. A polarization $W \subseteq V$ is simply a closed subspace. We write Pol(V) for the set of polarizations in V. A Lagrangian in H is a closed subspace $L \subset H$ such that $H = L \oplus \alpha(L)$. We write Lag(H) for the set of Lagrangians in H.

Given a polarization $W \in \text{Pol}(V)$, we obtain a Lagrangian $L_W = W \oplus (W^{\perp})^* \in \text{Lag}(\widehat{V})$. The assignment $L_{\bullet} : \text{Pol}(V) \to \text{Lag}(\widehat{V})$ is injective, but far from surjective. Indeed, if $T : V \to V$ is a skew-adjoint, conjugate-linear map, then graph (ιT) is a Lagrangian.

To see this, pick $v, w \in V$ arbitrary, and compute

$$\langle (v, \iota Tv), (Tw, \iota w) \rangle = \langle v, Tw \rangle + \langle \iota Tv, \iota w \rangle = \langle v, Tw \rangle + \langle w, Tv \rangle = \langle v, Tw \rangle - \langle v, Tw \rangle = 0$$

This proves that $graph(\iota T) \subseteq \alpha(graph(\iota T))^{\perp}$. On the other hand, suppose that $(x, y) \in \alpha(graph(\iota T))^{\perp} \subset V \oplus V^*$. We then have

$$0 = \langle (Tw, \iota w), (x, y) \rangle = \langle Tw, x \rangle + \langle \iota w, y \rangle = -\langle Tx, w \rangle + \langle \iota^* y, w \rangle = \langle \iota^* y - Tx, w \rangle$$

Because this must hold for all $w \in V$, we have $\iota^* y - Tx = 0$, or in other words $y = \iota Tx$, and thus $(x, y) = (x, \iota Tx) \in \operatorname{graph}(\iota T)$.

If T is not the zero map, then $graph(\iota T)$ is not in the image of L_{\bullet} .

Let $L \subset H$ be a Lagrangian. If $v \in L$, we write $v \wedge \bullet$ for the bounded operator $\Lambda L \to \Lambda L, f \mapsto v \wedge f$. If $w \in \alpha(L)$, we write b(w) for the complex-linear extension of the map

$$\wedge^{n+1}L \to \wedge^n L : l_0 \wedge \ldots \wedge l_n \mapsto \sum_{k=0}^n (-1)^k \langle l_k, \alpha(w) \rangle l_0 \wedge \ldots \wedge \widehat{l_k} \wedge \ldots \wedge l_n$$

The map

$$\rho_L : H = L \oplus \alpha(L) \to \mathcal{B}(\Lambda L),$$
$$(v, w) \mapsto v \land \bullet + b(w)$$

is a Clifford map, and thus extends to *-homomorphism $\rho_L : \operatorname{Cl}(H) \to \Lambda L$. The map ρ_L is the Fock representation of $\operatorname{Cl}(H)$ with respect to L.

Let $W \subseteq V$ be a polarization we then obtain a Lagrangian $L_W := W \oplus (W^{\perp})^* \subset \widehat{V}$, and thus a corresponding Fock representation $\rho_{L_W} : \operatorname{Cl}(\widehat{V}) \to \mathcal{B}(\Lambda L_W)$. Pre-composition with the *-isomorphism u thus yields a representation $\rho_{L_W} u : \operatorname{CAR}(V) \to \mathcal{B}(\Lambda L_W)$.

A representation $\pi_W \operatorname{CAR}(V) \to \mathcal{B}(\Lambda L_W)$ can also be constructed directly as follows. First, observe that $\Lambda L_W = \Lambda W \otimes \Lambda(W^{\perp})^*$. If $w \in W^{\perp}$, then we write c(w) for the complex-linear extension of the map

$$\wedge^{n+1} (W^{\perp})^* \to \wedge^n (W^{\perp})^*,$$

$$f_0 \wedge \dots \wedge f_n \mapsto \sum_{k=0}^n (-1)^k f_k(w) f_0 \wedge \dots \wedge \widehat{f_k} \wedge \dots \wedge f_n$$

The map

$$\pi_W: V = W \oplus W^{\perp} \to \mathcal{B}(\Lambda W \otimes \Lambda (W^{\perp})^*),$$
$$(v, w) \mapsto (v \wedge \bullet) \otimes \mathbb{1} + \mathbb{1} \otimes c(w)$$

is then a CAR-map, whence it extends to a *-homomorphism $\pi_W : CAR(V) \to \mathcal{B}(\Lambda L_W)$.

Proposition 3.2. $\pi_W = \rho_{L_W} u$

Proof. Let $(v, w) \in W \oplus W^{\perp} = V$ be arbitrary. We then have $j(v, w) = ((v, 0), (0, w)) \in (W \oplus (W^{\perp})^*) \oplus (W^* \oplus W^{\perp}) = L_W \oplus \alpha(L_W) = \hat{V}$. The map u is the (unique) extension of the map $i_{\hat{V}}j : V \to \operatorname{Cl}(\hat{V})$. We then compute

$$\rho_{L_W} j(v, w) = \rho_{L_W} ((v, 0), (0, w)) = v \land \bullet + b(0, w)$$

We claim that $\mathbb{1} \otimes c(w) = b(0, w)$ for all $w \in W^{\perp}$. Indeed, let $y = x \otimes f_0 \wedge ... \wedge f_n \in \Lambda W \otimes \wedge^{n+1} (W^{\perp})^*$ be arbitrary, we then have

$$b(0,w)(y) = x \otimes \sum_{k=0}^{n} (-1)^{k} \langle f_{k}, \alpha(0,w) \rangle f_{0} \wedge \dots \wedge \widehat{f_{k}} \wedge \dots \wedge f_{n}$$
$$= x \otimes \sum_{k=0}^{n} (-1)^{k} \langle f_{k}, \iota(w) \rangle f_{0} \wedge \dots \wedge \widehat{f_{k}} \wedge \dots \wedge f_{n}$$
$$= x \otimes \sum_{k=0}^{n} (-1)^{k} f_{k}(w) f_{0} \wedge \dots \wedge \widehat{f_{k}} \wedge \dots \wedge f_{n}$$
$$= (\mathbb{1} \otimes c(w))(y)$$

We thus see that $\pi_W(v, w) = \rho_{L_W} u(v, w)$ for all $(v, w) \in W \oplus W^{\perp}$. This implies that this identity must also hold on all of CAR(V).

Remark 3.3. As before, we consider a complex Hilbert space H with real structure α . Let $L \in Lag(H)$. Implicit in the definition of the Fock representation of Cl(H) on ΛL is the identification of $\alpha(L)$ with L^* through the (complex-linear) map $\alpha(L) \to L^*, w \mapsto \langle \bullet, \alpha(w) \rangle$. In fact, this identification allows us to identify H with \hat{L} (as complex Hilbert spaces with real structures). Proposition 2.7 then tells us that the inclusion $L \to H$ extends to an isomorphism of C^{*}-algebras $u : CAR(L) \to Cl(H)$. We now define the *-isomorphism $s_L : CAR(H) \to Cl(H^*)$ to be the composition of the following *-isomorphisms:

$$\operatorname{CAR}(H) = \operatorname{CAR}(L \oplus \alpha(L)) \to \operatorname{CAR}(L) \otimes \operatorname{CAR}(L^*) \to \operatorname{Cl}(H) \otimes \operatorname{Cl}(H^*).$$

It should be emphasized that the construction of s_L required the choice of a Lagrangian $L \in \text{Lag}(H)$; moreover, different choices of Lagrangians lead to different isomorphisms. Let $\pi_L^L : \text{CAR}(L) \to \mathcal{B}(\Lambda L)$ be the Fock representation of CAR(L) with respect to $L \in \text{Pol}(L)$, and let π_L^H be the Fock representation of CAR(H) with respect to $L \in \text{Pol}(H)$. As a corollary of Proposition 3.2 the map $u : \text{CAR}(L) \to \text{Cl}(H)$ satisfies $\pi_L^L = \rho_L u$, which in turn implies that $\pi_L^H = (\rho_L \otimes \rho_{L^*})s_L$.

References

- [PR94] R. J. Plymen and P. L. Robinson. Spinors in Hilbert Space, volume 114 of Cambridge Tracts in Mathematics. 1994.
- [Ten17] James E. Tener. "Construction of the unitary free fermion Segal CFT". Commun. Math. Phys., 355(2):463-518, 2017. arXiv: 1608.02095. http://arxiv.org/abs/1608.02095, doi:10.1007/ s00220-017-2959-x.