

# The spinor bundle on loop space & its fusion product

Peter Kristel

Greifswald University Dissertation Colloquium

January 20







#### 1. Finite dimensional Clifford algebras and spinors

#### 2. Clifford algebras and spinors in infinite dimensions

#### 3. The spinor bundle on loop space

#### 4. Fusion & Locality

Infinite dimensions

Spinors on loop space

Fusion & Locality

#### 1. Finite dimensional Clifford algebras and spinors

#### 2. Clifford algebras and spinors in infinite dimensions

#### 3. The spinor bundle on loop space

4. Fusion & Locality

Spinors on loop space

Fusion & Locality

# Finite dimensional real Clifford algebras

- V a finite dimensional Euclidean space
- **Definition:** Cl(V)

The Clifford algebra Cl(V) is the algebra generated by V subject to

$$vw + wv = 2\langle v, w \rangle \mathbf{1}, \quad v, w \in V.$$

 $V \hookrightarrow \operatorname{Cl}(V)$ 

#### Lemma: Universal property

If A is a unital algebra, and  $f: V \to A$  satisfies

$$f(v)f(w) + f(w)f(v) = 2\langle v, w \rangle \mathbf{1}, \quad v, w \in V,$$

then there is a unique homomorphism  $F : Cl(V) \to A$  extending f.

Infinite dimensions

Spinors on loop space

Fusion & Locality

# The spin group

### **Definition:** Spin(d)

The spin group Spin(d) is the universal cover of SO(d). I.e. Spin(d) is a simply connected Lie group which fits in the exact sequence

$$\mathbb{Z}_2 \hookrightarrow \operatorname{Spin}(d) \twoheadrightarrow \operatorname{SO}(d).$$

#### The spin group and the Clifford algebra

The spin group is a subgroup of the unit group of the Clifford algebra:

 $\operatorname{Spin}(d) \subset \operatorname{Cl}(\mathbb{R}^d)^{\times}.$ 

Thus, Spin(d) acts on  $Cl(\mathbb{R}^d)$  by conjugation.

Fusion & Locality

# Where do spin groups & Clifford algebras appear?

- K-theory (Karoubi)
- Index theory (Atiyah-Singer index theorem)
- · Quantum mechanics of particles with spin

Let  $\mathcal{F}$  be a module for  $\operatorname{Cl}(\mathbb{R}^d)$ , and  $e_j$  the canonical basis for  $\mathbb{R}^d$ . Then spinor fields  $\psi \in L^2(\mathbb{R}^d, \mathcal{F})$  satisfy the Dirac equation:

$$i\sum_{j=1}^d e_j\partial_j\psi = m\psi.$$

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Spinors on Manifolds

#### Spinor bundles

Let M be a finite dimensional oriented Riemannian manifold. The Clifford algebras  $\operatorname{Cl}(T_x M)$  fit together into a bundle  $\operatorname{Cl}(TM) \to M$ . If M is spin, then we can construct a bundle  $\mathbb{S} \to M$  of modules for  $\operatorname{Cl}(TM)$ .

In a 2005 survey Stolz & Teichner gave a blueprint for replacing M by its loop space LM.

Infinite dimensions

Spinors on loop space

Fusion & Locality

# Spinors on Manifolds

#### Spinor bundles

Let M be a finite dimensional oriented Riemannian manifold. The Clifford algebras  $\operatorname{Cl}(T_x M)$  fit together into a bundle  $\operatorname{Cl}(TM) \to M$ . If M is spin, then we can construct a bundle  $\mathbb{S} \to M$  of modules for  $\operatorname{Cl}(TM)$ .

In a 2005 survey Stolz & Teichner gave a blueprint for replacing M by its loop space LM.

• Quantum mechanics of strings with spin

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Build your own spinor bundle

M some finite dimensional, oriented "spacetime" manifold.

- Pick a representation  $\mathcal{F}$  for  $\operatorname{Cl}(\mathbb{R}^d)$  and thus also for  $\operatorname{Spin}(d) \subset \operatorname{Cl}(\mathbb{R}^d)$ .
- Reduce the structure group of SO(M) to Spin(d), call the result Spin(M).

Then  $\mathbb{S} := \operatorname{Spin}(M) \times_{\operatorname{Spin}(d)} \mathcal{F}$  is a spinor bundle.

Infinite dimensions

Spinors on loop space

Fusion & Locality

Finite dimensional Clifford algebras and spinors

#### 2. Clifford algebras and spinors in infinite dimensions

3. The spinor buncle on loop space

4. Fusion & Locality

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Infinite dimensional Clifford algebras

- V a complex Hilbert space, now *infinite* dimensional.
  - Define a Clifford algebra as before.

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Infinite dimensional Clifford algebras

V a complex Hilbert space, now *infinite* dimensional.

- Define a Clifford algebra as before.
- Complete this algebra to a C\*-algebra.

This Clifford C\*-algebra is universal.

Infinite dimensions

Spinors on loop space

Fusion & Locality

# Fock spaces

#### **Definition: Lagrangians**

A subspace  $L \subset V$  is Lagrangian if

- $V = L \oplus \overline{L}$ ,
- $\langle v, \overline{w} \rangle = 0$ , for all  $v, w \in L$ .

Identify  $\overline{L} \simeq L^*$ , through  $w \mapsto \langle \overline{w}, \bullet \rangle$ .

#### Definition: Fock representation

The Fock space  $\mathcal{F}$  is the Hilbert completion of the exterior algebra  $\Lambda L$ .

- L acts on  $\Lambda L$  by left multiplication (creation).
- $\overline{L}$  acts on  $\Lambda L$  by contraction (annihilation).

This extends to a representation  $\pi : Cl(V) \to \mathcal{B}(\mathcal{F})$ .

Infinite dimensions

Spinors on loop space

Fusion & Locality

## **Bogoliubov transformations**

O(V) is the orthogonal group. Let  $g \in O(V)$ Using the universal property, define the *Bogoliubov transformation*  $\theta_g \in Aut(Cl(V))$  to be the extension of g.

Question: When are  $\pi$  and  $\pi \circ \theta_g$  unitarily equivalent? I.e. when does there exist a  $U \in U(\mathcal{F})$  such that

$$U\pi(a)U^* = \pi(\theta_g a), \quad a \in \operatorname{Cl}(V).$$

In this case: call  $\theta_q$  implementable.

Segal-Shale-Stinespring: Decompose g with respect to  $V = L \oplus \overline{L}$ , then  $\theta_g$  is implementable if and only if its off-diagonal part  $\overline{L} \to L$  is Hilbert-Schmidt.

Infinite dimensions

Spinors on loop space

Fusion & Locality

# A projective representation

#### Definition: Restricted orthogonal group

The restricted orthogonal group is

 $O_{\mathsf{res}}(V) := \{g \in O(V) \mid g \text{ is implementable}\}.$ 

If  $g \in O_{res}(V)$ , and U implements g, then so does  $\lambda U$ , for  $\lambda \in U(1)$ . Hence,  $O_{res}(V)$  acts projectively in  $\mathcal{F}$ . This gives a central extension

$$\mathbf{1} \to \mathrm{U}(1) \to \mathrm{Imp}(V) \to \mathrm{O}_{\mathsf{res}}(V) \to \mathbf{1}.$$

Infinite dimensions

Spinors on loop space

Fusion & Locality

Finite dimensional Clifford algebras and spinors

#### Clifford algebras and spinors in infinite dimensions

#### 3. The spinor bundle on loop space

#### 4. Fusion & Locality

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Spin structures on loop spaces

Let *M* be a spin manifold with spin frame bundle Spin(M). Then  $L \operatorname{Spin}(M)$  has structure group  $L \operatorname{Spin}(d)$ . The group  $L \operatorname{Spin}(d)$  has a "basic" central extension:

$$J(1) \to \widetilde{L} \operatorname{Spin}(d) \to L \operatorname{Spin}(d)$$

#### Definition (Killingback '87)

A spin structure on the loop space LM is a lift

 $\widetilde{L\operatorname{Spin}}(M) \to L\operatorname{Spin}(M).$ 

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Spin structures on loop spaces

Let M be a spin manifold with spin frame bundle Spin(M). Then  $L \operatorname{Spin}(M)$  has structure group  $L \operatorname{Spin}(d)$ . The group  $L \operatorname{Spin}(d)$  has a "basic" central extension:

$$J(1) \to \widetilde{L} \operatorname{Spin}(d) \to L \operatorname{Spin}(d)$$

Definition (Killingback '87)

A spin structure on the loop space LM is a lift

 $\widetilde{L\operatorname{Spin}}(M) \to L\operatorname{Spin}(M).$ 

Find a Hilbert space V with compatible  $\widetilde{L}$  Spin(d) and Cl(V) action.

Infinite dimensions

Spinors on loop space

Fusion & Locality

## The odd spinors on the circle

#### The Hilbert space

Set  $V := L^2(S^1, \mathbb{C}^d)$ . An (unorthodox) orthonormal basis of V is

$$\xi_{n,j}: e^{i\varphi} \mapsto e^{i(n+1/2)\varphi} e_j, \qquad \varphi \in [0, 2\pi]$$

where  $n \in \mathbb{Z}$  and  $\{e_j\}_{j=1,...,d}$  the standard basis of  $\mathbb{C}^d$ . Pointwise complex conjugation gives:  $\overline{\xi_{n,j}} = \xi_{-n-1,j}$ .

Let  $\mathbb{S} \to S^1$  be the odd spinor bundle on the circle. The basis  $\xi_{n,j}$  looks more natural when V is identified with  $L^2(S^1, \mathbb{S} \otimes \mathbb{C}^d)$ .

Infinite dimensions

Spinors on loop space

Fusion & Locality

# A Lagrangian

Compute for  $n, m \ge 0$  and j, l = 1, ..., d,

$$\begin{split} \langle \xi_{n,j}, \overline{\xi_{m,l}} \rangle &= \langle \xi_{n,j}, \xi_{-m-1,l} \rangle \\ &= \delta_{n,-m-1} \, \delta_{j,l} \\ &= 0. \end{split} \qquad \begin{aligned} \xi \text{'s are orthonormal} \\ &n \neq -m-1 \end{aligned}$$

#### Definition: Atiyah-Patodi-Singer (APS) Lagrangian

The *APS Lagrangian*  $L \subset V$  is the closure of the span of the vectors  $\xi_{n,j}$  with  $n \ge 0$  and j = 1, ..., d.

Have a Clifford algebra Cl(V), and a Fock space  $\mathcal{F}$  corresponding to the Lagrangian L.

Infinite dimensions

Spinors on loop space

Fusion & Locality

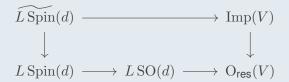
## The basic central extension of $L \operatorname{Spin}(d)$

#### The action of $L \operatorname{SO}(d)$

The loop group  $L \operatorname{SO}(d)$  acts on  $V = L^2(S^1, \mathbb{C}^d)$  pointwise. Pressley-Segal:  $L \operatorname{SO}(d) \to \operatorname{O}_{\text{res}}(V)$ .

#### Lemma

The pullback



is the basic central extension of  $L \operatorname{Spin}(d)$ 

Infinite dimensions

Spinors on loop space

Fusion & Locality

## The spinor bundle on loop space

Have representations  $\widetilde{L}\operatorname{Spin}(d) \circlearrowright \mathcal{F}$  and  $L\operatorname{Spin}(d) \circlearrowright \operatorname{Cl}(V)$ .

Define the *Clifford bundle on loop space*:  $L \operatorname{Spin}(M) \times_{L \operatorname{Spin}(d)} \operatorname{Cl}(V) =: \operatorname{Cl}(LM) \to LM.$ Each fibre is a Clifford algebra.

Given a "spin structure on loop space":  $\widetilde{L} \operatorname{Spin}(M) \to L \operatorname{Spin}(M)$ , we

Define the Spinor bundle on loop space:  $\widetilde{L\operatorname{Spin}(M)} \times_{\widetilde{L\operatorname{Spin}(d)}} \mathcal{F} =: \mathcal{F}(LM) \to LM$ . This is a bundle of rigged Hilbert spaces, where each fibre is a Fock space.

The Clifford bundle acts on the Fock bundle fibrewise.

Infinite dimensions

Spinors on loop space

Fusion & Locality

Finite dimensional Clifford algebras and spinors

#### 2. Clifford algebras and spinors in infinite dimensions

3 The spinor bundle on loop space

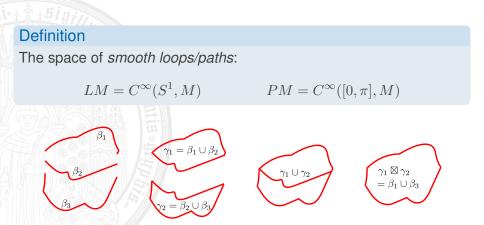
#### 4. Fusion & Locality

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Smooth loop space of a manifold



Loops/paths that can be glued together are called *compatible*.

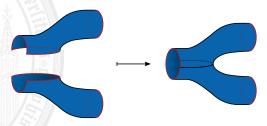
Infinite dimensions

Spinors on loop space

Fusion & Locality

# Interacting strings

Strings interact through splitting and merging. Want to relate the fibres  $\mathcal{F}(LM)_{\gamma_1}$  and  $\mathcal{F}(LM)_{\gamma_2}$  with the fibre  $\mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2}$ .



Will need more structure for this to work. From now on: M is equipped with a string structure. A string structure on M transgresses to a "fusive" spin structure on LM.

Infinite dimensions

Spinors on loop space

Fusion & Locality

## Clifford bundles over path space

Split  $S^1$  into the upper/lower semi-circle,  $I_{\pm}$ .

- $V_{\pm} := \{ f \in V \mid \operatorname{supp}(f) \subseteq I_{\pm} \}.$
- $P \operatorname{Spin}(d) \circlearrowright \operatorname{Cl}(V_{\pm}).$
- $P \operatorname{Spin}(M) \times_{P \operatorname{Spin}(d)} \operatorname{Cl}(V_{\pm}) =: \operatorname{Cl}_{\pm}(PM) \to PM.$

Fix  $\beta_1 \cup \beta_2 = \gamma \in LM$ , for  $\beta_1, \beta_2 \in PM$ , then  $\mathcal{F}(LM)_{\gamma}$  is a left  $\operatorname{Cl}(LM)_{\gamma} = \operatorname{Cl}_+(PM)_{\beta_1} \otimes \operatorname{Cl}_-(PM)_{\beta_2}$ -module. We turn it into a bimodule:

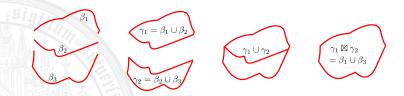
 $\operatorname{Cl}_+(PM)_{\beta_1} \circlearrowright \mathcal{F}(LM)_{\gamma} \circlearrowright \operatorname{Cl}_+(PM)_{\beta_2}.$ 

Infinite dimensions

Spinors on loop space

Fusion & Locality

# **Fusion**



#### Assume M is string.

#### Theorem: Fusion of Fock spaces [PK'20]

For each triple  $(\beta_1, \beta_2, \beta_3)$ , there exists an isomorphism of  $Cl_+(PM)_{\beta_1}$ - $Cl_+(PM)_{\beta_3}$  bimodules

$$\mu_{1,2,3}: \mathcal{F}(LM)_{\gamma_1} \boxtimes_{\mathrm{Cl}_+(PM)_{\beta_2}} \mathcal{F}(LM)_{\gamma_2} \xrightarrow{\simeq} \mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2}.$$

such that these isomorphisms are associative, i.e. have a commutative square for each quadruple  $(\beta_1, \beta_2, \beta_3, \beta_4)$ .

Infinite dimensions

Spinors on loop space

Fusion & Locality

# Sketch of construction

- Find a natural isomorphism of the canonical fibre:  $\mathcal{F} \boxtimes_{\mathrm{Cl}_+(V)} \mathcal{F} \xrightarrow{\simeq} \mathcal{F}.$
- Choose suitable  $\varphi_1, \varphi_2, \varphi_3$

Picking  $\varphi_i$  arbitrarily will fail associativity. Solution: for any  $\varphi_1, \varphi_2$  produce  $\varphi_3$ .

Infinite dimensions

Spinors on loop space

Fusion & Locality

# Finding suitable $\varphi_i$

An element  $p \in \widetilde{L} \operatorname{Spin}(M)_{\gamma}$  gives a trivialization:

 $\varphi_p: \mathcal{F}(LM)_\gamma \to \mathcal{F}, [p, v] \mapsto v.$ 

• Pick compatible loops  $\alpha_1 \in L \operatorname{Spin}(M)_{\gamma_1}$  and  $\alpha_2 \in L \operatorname{Spin}(M)_{\gamma_2}$ .

• Set 
$$\alpha_3 = \alpha_1 \boxtimes \alpha_2 \in L \operatorname{Spin}(M)_{\gamma_3}$$
.

• Waldorf: Because  $L \operatorname{Spin}(M) \to L \operatorname{Spin}(M)$  comes from a *string structure* on M, it is a *fusion* extension:  $\Rightarrow$ given  $p_1, p_2 \in L \operatorname{Spin}(M)$  with  $p_1 \mapsto \alpha_1$  and  $p_2 \mapsto \alpha_2$ , can construct  $p_3 \in L \operatorname{Spin}(M)$  with  $p_3 \mapsto \alpha_3$ .

Claim: The map  $\mu_{\varphi_i}$  does not depend on any of the choices.

#### Summary

- Studied infinite dimensional Clifford algebras.
- Constructed the spinor bundle on loop space  $\mathcal{F}(LM) \to LM$ .
- Constructed an associative family of fusion isomorphisms  $\mathcal{F}(LM)_{\gamma_1} \boxtimes_{\mathrm{Cl}_+(PM)_{\beta_2}} \mathcal{F}(LM)_{\gamma_2} \xrightarrow{\simeq} \mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2}$  expressing that  $\mathcal{F} \to LM$  is *local* in M.

#### Further work

- "Regress" the bundle  $\mathcal{F} \to LM$  to a (2-vector) "stringor" bundle over M.
- The diffeomorphism group of the circle acts in LM. Lift this action to a bundle action  $\mathcal{F} \to LM$ .
- Equip  $\mathcal{F} \to LM$  with a notion of parallel transport over surfaces.

- Set  $\gamma_i = e_i$ , where  $\{e_i\}$  is the standard basis for  $\mathbb{R}^d$ .
- Fix a representation  $\mathcal{F}$  of  $Cl(\mathbb{R}^d)$ .
- Replace  $C^{\infty}(\mathbb{R}^d)$  by  $C^{\infty}(\mathbb{R}^d, \mathcal{F})$ .

$$D := \sum_{j=1}^{d} \gamma_j \left(\frac{\partial}{\partial x_j}\right) \quad \Longrightarrow \quad D^2 = \Delta = \sum_{j=1}^{d} \left(\frac{\partial}{\partial x_j}\right)^2$$

D is the Dirac operator.

Let  $v + w \in L \oplus \alpha(L) = V \subset Cl(V)$  and  $l_1 \wedge \cdots \wedge l_k \in \mathcal{F}$  then:  $\pi(v+w)(l_1 \wedge \ldots \wedge l_k) = v \wedge l_1 \wedge \cdots \wedge l_k$ +  $\sum_{j=1}^{k} (-1)^{j-1} \langle l_j, \alpha(w) \rangle l_1 \wedge \cdots \wedge \hat{l}_j \wedge \cdots \wedge l_k$  $\overline{i=1}$ 

## The Dirac operator on a spin manifold

*M* a spin manifold with spinor bundle  $\mathbb{S} \to M$ . Let  $\nabla$  be the lift of the Levi-Civita connection to  $\mathbb{S}$ .

- View  $\nabla$  as a map  $\nabla : \Gamma(\mathbb{S}) \to \Gamma(T^*M) \otimes \Gamma(\mathbb{S}).$
- Identify  $T^*M$  with TM and embed TM into Cl(M).
- Write  $c : \Gamma(Cl(M)) \otimes \Gamma(S) \to \Gamma(S)$  for Clifford multiplication.
- The Dirac operator is the map

$$D: \Gamma(\mathbb{S}) \xrightarrow{\nabla} \Gamma(\mathrm{Cl}(M)) \otimes \Gamma(\mathbb{S}) \xrightarrow{c} \Gamma(\mathbb{S}).$$

In local coordinates

$$Ds = \sum_{i} e_i \cdot \nabla_{e_i} s,$$

where  $e_i$  forms a basis for TM.

# **Rigged Hilbert space**

#### Definition

A rigged Hilbert space is a triple  $(F, H, \iota)$  consisting of

- A Hilbert space H.
- A Fréchet space F.
- A continuous linear injection  $\iota: F \to H$ .

Such that the image  $\iota(F)$  is dense in H.

# The Atiyah-Bott-Shapiro isomorphism

 $A_n$  the Grothendieck group of real graded  $\operatorname{Cl}(\mathbb{R}^n)$  modules. In fact  $A_n$  is a ring.

#### Theorem: Atiyah-Bott-Shapiro ('63)

For each k there is an isomorphism:

$$A_n/i^*A_{n+1} \xrightarrow{\sim} KO^{-k}(\text{pt}).$$

#### The Atiyah-Singer index theorem

If P is an elliptic operator between two vector bundles E and F on a compact manifold, then the topological index of P is equal to the analytical index of P.

