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Finite dimensional real Clifford algebras

V a finite dimensional Euclidean space

Definition: Cl(V )

The Clifford algebra Cl(V ) is the algebra generated by V subject to

vw + wv = 2〈v, w〉1, v, w ∈ V.

V ↪→ Cl(V )

Lemma: Universal property
If A is a unital algebra, and f : V → A satisfies

f(v)f(w) + f(w)f(v) = 2〈v, w〉1, v, w ∈ V,

then there is a unique homomorphism F : Cl(V )→ A extending f .
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The spin group

Definition: Spin(d)
The spin group Spin(d) is the universal cover of SO(d). I.e. Spin(d) is
a simply connected Lie group which fits in the exact sequence

Z2 ↪→ Spin(d)� SO(d).

The spin group and the Clifford algebra
The spin group is a subgroup of the unit group of the Clifford algebra:

Spin(d) ⊂ Cl(Rd)×.

Thus, Spin(d) acts on Cl(Rd) by conjugation.
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Where do spin groups & Clifford algebras appear?

• K-theory (Karoubi)
• Index theory (Atiyah-Singer index theorem)

...
• Quantum mechanics of particles with spin

Let F be a module for Cl(Rd), and ej the canonical basis for Rd.
Then spinor fields ψ ∈ L2(Rd,F) satisfy the Dirac equation:

i

d∑
j=1

ej∂jψ = mψ.
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Spinors on Manifolds

Spinor bundles
Let M be a finite dimensional oriented Riemannian manifold. The
Clifford algebras Cl(TxM) fit together into a bundle Cl(TM)→M . If
M is spin, then we can construct a bundle S→M of modules for
Cl(TM).

In a 2005 survey Stolz & Teichner gave a blueprint for replacing M by
its loop space LM .

...
• Quantum mechanics of strings with spin
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Build your own spinor bundle

M some finite dimensional, oriented “spacetime” manifold.

• Pick a representation F for Cl(Rd) and thus also for
Spin(d) ⊂ Cl(Rd).

• Reduce the structure group of SO(M) to Spin(d), call the result
Spin(M).

Then S := Spin(M)×Spin(d) F is a spinor bundle.
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Infinite dimensional Clifford algebras

V a complex Hilbert space, now infinite dimensional.
• Define a Clifford algebra as before.

• Complete this algebra to a C∗-algebra.
This Clifford C∗-algebra is universal.
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Fock spaces

Definition: Lagrangians
A subspace L ⊂ V is Lagrangian if
• V = L⊕ L,
• 〈v, w〉 = 0, for all v, w ∈ L.

Identify L ' L∗, through w 7→ 〈w, •〉.

Definition: Fock representation
The Fock space F is the Hilbert completion of the exterior algebra
ΛL.
• L acts on ΛL by left multiplication (creation).
• L acts on ΛL by contraction (annihilation).

This extends to a representation π : Cl(V )→ B(F).
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Bogoliubov transformations

O(V ) is the orthogonal group. Let g ∈ O(V )
Using the universal property, define the Bogoliubov transformation
θg ∈ Aut(Cl(V )) to be the extension of g.

Question: When are π and π ◦ θg unitarily equivalent? I.e. when
does there exist a U ∈ U(F) such that

Uπ(a)U∗ = π(θga), a ∈ Cl(V ).

In this case: call θg implementable.
Segal-Shale-Stinespring: Decompose g with respect to V = L⊕ L,

then θg is implementable if and only if its off-diagonal
part L→ L is Hilbert-Schmidt.
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A projective representation

Definition: Restricted orthogonal group
The restricted orthogonal group is

Ores(V ) := {g ∈ O(V ) | g is implementable}.

If g ∈ Ores(V ), and U implements g, then so does λU , for λ ∈ U(1).
Hence, Ores(V ) acts projectively in F . This gives a central extension

1→ U(1)→ Imp(V )→ Ores(V )→ 1.
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Spin structures on loop spaces

Let M be a spin manifold with spin frame bundle Spin(M). Then
LSpin(M) has structure group LSpin(d). The group LSpin(d) has a
“basic” central extension:

U(1)→ L̃Spin(d)→ LSpin(d)

Definition (Killingback ’87)
A spin structure on the loop space LM is a lift

L̃Spin(M)→ LSpin(M).

Find a Hilbert space V with compatible L̃Spin(d) and Cl(V ) action.
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The odd spinors on the circle

The Hilbert space
Set V := L2(S1,Cd). An (unorthodox) orthonormal basis of V is

ξn,j : eiϕ 7→ ei(n+1/2)ϕej , ϕ ∈ [0, 2π]

where n ∈ Z and {ej}j=1,...,d the standard basis of Cd.
Pointwise complex conjugation gives: ξn,j = ξ−n−1,j .

Let S→ S1 be the odd spinor bundle on the circle. The basis ξn,j
looks more natural when V is identified with L2(S1,S⊗ Cd).
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A Lagrangian

Compute for n,m > 0 and j, l = 1, ..., d,

〈ξn,j , ξm,l〉 = 〈ξn,j , ξ−m−1,l〉
= δn,−m−1 δj,l ξ’s are orthonormal
= 0. n 6= −m− 1

Definition: Atiyah-Patodi-Singer (APS) Lagrangian
The APS Lagrangian L ⊂ V is the closure of the span of the vectors
ξn,j with n > 0 and j = 1, ..., d.

Have a Clifford algebra Cl(V ), and a Fock space F corresponding to
the Lagrangian L.
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The basic central extension of L Spin(d)

The action of L SO(d)

The loop group LSO(d) acts on V = L2(S1,Cd) pointwise.
Pressley-Segal: LSO(d)→ Ores(V ).

Lemma
The pullback

L̃Spin(d) Imp(V )

LSpin(d) LSO(d) Ores(V )

is the basic central extension of LSpin(d)
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The spinor bundle on loop space

Have representations L̃Spin(d) � F and LSpin(d) � Cl(V ).

Define the Clifford bundle on loop space:
LSpin(M)×L Spin(d) Cl(V ) =: Cl(LM)→ LM .
Each fibre is a Clifford algebra.

Given a “spin structure on loop space”: L̃Spin(M)→ LSpin(M), we

Define the Spinor bundle on loop space:
L̃Spin(M)×

L̃ Spin(d)
F =: F(LM)→ LM . This is a bundle of rigged

Hilbert spaces, where each fibre is a Fock space.

The Clifford bundle acts on the Fock bundle fibrewise.
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Smooth loop space of a manifold

Definition
The space of smooth loops/paths:

LM = C∞(S1,M) PM = C∞([0, π],M)

Loops/paths that can be glued together are called compatible.
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Interacting strings

Strings interact through splitting and merging.
Want to relate the fibres F(LM)γ1 and F(LM)γ2 with the fibre
F(LM)γ1�γ2 .

Will need more structure for this to work. From now on: M is
equipped with a string structure. A string structure on M
transgresses to a “fusive” spin structure on LM .
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Clifford bundles over path space

Split S1 into the upper/lower semi-circle, I±.

• V± := {f ∈ V | supp(f) ⊆ I±}.
• P Spin(d) � Cl(V±).
• P Spin(M)×P Spin(d) Cl(V±) =: Cl±(PM)→ PM .

Fix β1 ∪ β2 = γ ∈ LM , for β1, β2 ∈ PM , then F(LM)γ is a left
Cl(LM)γ = Cl+(PM)β1 ⊗ Cl−(PM)β2-module.
We turn it into a bimodule:

Cl+(PM)β1 � F(LM)γ 	 Cl+(PM)β2 .
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Fusion

Assume M is string.

Theorem: Fusion of Fock spaces [PK’20]
For each triple (β1, β2, β3), there exists an isomorphism of
Cl+(PM)β1-Cl+(PM)β3 bimodules

µ1,2,3 : F(LM)γ1 �Cl+(PM)β2
F(LM)γ2

'−→ F(LM)γ1�γ2 .

such that these isomorphisms are associative, i.e. have a
commutative square for each quadruple (β1, β2, β3, β4).
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Sketch of construction

• Find a natural isomorphism of the canonical fibre:
F �Cl+(V ) F

'−→ F .
• Choose suitable ϕ1, ϕ2, ϕ3

F(LM)γ1 �Cl+(PM)β2
F(LM)γ2 F(LM)γ1�γ2

F �Cl+(V ) F F

µϕi

ϕ1�ϕ2 ϕ−1
3

Picking ϕi arbitrarily will fail associativity.
Solution: for any ϕ1, ϕ2 produce ϕ3.
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Finding suitable ϕi

An element p ∈ L̃Spin(M)γ gives a trivialization:

ϕp : F(LM)γ → F , [p, v] 7→ v.

• Pick compatible loops α1 ∈ LSpin(M)γ1 and α2 ∈ LSpin(M)γ2 .
• Set α3 = α1 � α2 ∈ LSpin(M)γ3 .

• Waldorf: Because ˜LSpin(M)→ LSpin(M) comes from a string
structure on M , it is a fusion extension: ⇒
given p1, p2 ∈ ˜LSpin(M) with p1 7→ α1 and p2 7→ α2, can
construct p3 ∈ ˜LSpin(M) with p3 7→ α3.

Claim: The map µϕi does not depend on any of the choices.



Summary
• Studied infinite dimensional Clifford algebras.
• Constructed the spinor bundle on loop space F(LM)→ LM .
• Constructed an associative family of fusion isomorphisms
F(LM)γ1 �Cl+(PM)β2

F(LM)γ2
'−→ F(LM)γ1�γ2 expressing that

F → LM is local in M .

Further work
• “Regress” the bundle F → LM to a (2-vector) “stringor” bundle

over M .
• The diffeomorphism group of the circle acts in LM . Lift this

action to a bundle action F → LM .
• Equip F → LM with a notion of parallel transport over surfaces.



The Dirac operator

• Set γi = ei, where {ei} is the standard basis for Rd.
• Fix a representation F of Cl(Rd).
• Replace C∞(Rd) by C∞(Rd,F).

D :=

d∑
j=1

γj

(
∂

∂xj

)
=⇒ D2 = ∆ =

d∑
j=1

(
∂

∂xj

)2

.

D is the Dirac operator.



Action of Cl(V ) on F

Let v + w ∈ L⊕ α(L) = V ⊂ Cl(V ) and l1 ∧ · · · ∧ lk ∈ F then:

π(v + w)(l1 ∧ . . . ∧ lk) = v ∧ l1 ∧ · · · ∧ lk

+

k∑
j=1

(−1)j−1〈lj , α(w)〉l1 ∧ · · · ∧ l̂j ∧ · · · ∧ lk



The Dirac operator on a spin manifold

M a spin manifold with spinor bundle S→M . Let ∇ be the lift of the
Levi-Civita connection to S.
• View ∇ as a map ∇ : Γ(S)→ Γ(T ∗M)⊗ Γ(S).
• Identify T ∗M with TM and embed TM into Cl(M).
• Write c : Γ(Cl(M))⊗ Γ(S)→ Γ(S) for Clifford multiplication.
• The Dirac operator is the map

D : Γ(S)
∇−→ Γ(Cl(M))⊗ Γ(S)

c−→ Γ(S).

In local coordinates
Ds =

∑
i

ei · ∇eis,

where ei forms a basis for TM .



Rigged Hilbert space

Definition
A rigged Hilbert space is a triple (F,H, ι) consisting of
• A Hilbert space H.
• A Fréchet space F .
• A continuous linear injection ι : F → H.

Such that the image ι(F ) is dense in H.



The Atiyah-Bott-Shapiro isomorphism

An the Grothendieck group of real graded Cl(Rn) modules. In fact An
is a ring.

Theorem: Atiyah-Bott-Shapiro (’63)
For each k there is an isomorphism:

An/i
∗An+1

∼−→ KO−k(pt).



The Atiyah-Singer index theorem
If P is an elliptic operator between two vector bundles E and F on a
compact manifold, then the topological index of P is equal to the
analytical index of P .
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