Cutting cakes

Or: How to share your cake and eat it too.

‘Tis the season

Heterogeneous cakes

One piece may have different relative values to different people.

I cut, you choose

Two people share a cake.
One person cuts the cake in half, the other person chooses.

Everyone is happy.

Dubins and Spanier's moving knife*

- Slowly move a knife over the cake.
- One person yells "cut!".
- This person gets the slice just cut off.
- Repeat until there is just one person left.

Works for any number, n, of players!

Envious moving knife

- Player A yells cut at $1 / 3$
- Player B yells cut at $1 / 2$

The distribution is proportional.

It is not envy-free.

Solution: Give everyone a knife!

Stromquist's moving knives*

- Referee slowly moves a knife.
- Hungry people A, B, C divide right side of the cake.
- Someone yells "Cut!".
- The yeller gets the left piece.
- Person with their knife closest to the referee gets the middle piece.

Works only for three people.
Results in proportional and envy-free solution.
Could be a bit dangerous, don't try this at your niece's sixth birthday party!

Framework

- The cake is some set X.
- Each player has a normalized measure on X, representing how he values each possible piece of cake.
- The value of two disjoint pieces of cake is the sum of the values of the pieces.
- The measure is non-negative. It's never bad to have more cake!
- The measure is atomless, no single point has non-zero value.

Hidden assumption: absolute continuity.

Imagine a cake
bland as cardboard, but with delicious frosting.

The moving knife procedure fails.

Better than fair.

Imagine a cake, one half with anchovies and one half with cashew nuts (and try not to be sick).

Suppose that I like cashew nuts, but I'm allergic to seafood. And you like anchovies, but you're allergic to nuts.

The "I cut, you choose" protocol might give us a fair division, but it's hardly the best one.

- A division is weak Pareto optimal if there is no division that is better for everyone.
- A division is strong Pareto optimal if there is no division that is better for at least one person and no worse for the rest.

Surplus Procedure

Goal: If possible, give both players more than 50%.

- Both players tell their measure to a referee.
- The referee determines the medians: a and b.
- The referee cuts the cake at a specific point c in between a and b.

Challenge: How does one decide c ? One option:
Solution should be

- Fair
- Envy-free
- Relatively equitable

Disconnected pieces?

If we allow more than two pieces the surplus procedure is not optimal!

Liars take the cake.

The surplus procedure is not strategy-proof.
Lying can give a player a risk-free advantage.

Recall the cut point formula:

$$
\frac{v_{1}(a, c)}{v_{1}(a, b)}=\frac{v_{2}(c, b)}{v_{2}(a, b)}
$$

More players?

Stromquist's moving knifes procedure does not generalize to more than three players.
Envy-free procedure for n players does exist.*
This solution has a big flaw, it has unbounded runtime.
In fact: Theorem (Stromquist")
-There is no bounded algorithm that gives an envy-free connected division of a one-dimensional cake for three or more players.
*F. E. Su, Rental Harmony: Sperner's lemma in fair division, Amer. Math. Monthly 106 (1999) 930-942
**W. Stromquist, Envy-free cake divisions cannot be found by finite protocols, Elec. J. of Comb. 15

Bounded proportional division

Dubins and Spanier's moving knife is not finite either, but has a finite analog.

- Each player makes a mark at $1 / n$
- The player with the left-most mark gets that piece
- Repeat.
(Complexity n^{2})

Disconnected pieces?

- $n=3:$ Selfridge-Conway* finds an envy-free distribution in a finite number of steps with at most five cuts.
- Arbitrary n: Aziz and Mackenzie**

*J. Robertson, W. Webb, Cake-Cutting Algorithms: Be Fair If You Can (1998)
**H. Aziz, S. Mackenzie, A Discrete and Bounded Envy-free Cake Cutting Protocol for Any Number of Agents, Proc. of the 48th Annual ACM SIGACT Sym. on Theory of Computing - STOC (2016) p. 454

Application: Politics

"Compromise is the art of dividing a cake in such a way that everyone believes he has the biggest piece."

- Ludwig Erhard

