I Cutting cakes

Or: How to share your cake and eat it too.
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‘Tis the season
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I Heterogeneous cakes

One piece may have different relative values to different people.
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I | cut, you choose

Two people share a cake.

One person cuts the cake In half, the other person
chooses.

Everyone is happy.
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Dubins and Spanier’'s moving knife®

~
* Slowly move a knife over the cake. it R 1

* One person yells “cut!”. -
* This person gets the slice just cut off.

* Repeat until there is just one person left.

Works for any number, n, of players!

The result is a proportional distribution of the cake:
Each person has at least 1/n of the cake. [ ] /q

The result might not be envy-free: Y
Someone might prefer someone else’s piece. AN, ;

*L. Dubins and E. Spanier, How to cut a cake fairly, Amer. Math. Montly 68 (1961) 1-17 > /17



* Player Ayells cut at 1/3
* Player B yells cut at 1/2

The distribution is
proportional.

It is not envy-free.

Solution: Give everyone
a knife!

Envious moving knife

—e— Player A

—a— Player B
—e— Player C
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I Stromquist’'s moving knives”

* Referee slowly moves a knife.

* Hungry people A,B,C divide right side of the cake.
 Someone yells “Cut!”.

* The yeller gets the left piece.

* Person with their knife closest to the referee gets
the middle piece.

Works only for three people.
Results in proportional and envy-free solution.

Could be a bit dangerous, don't try this at your niece’s
sixth birthday party!

*W. Stromquist, How to Cut a Cake Fairly. Amer. Math. Monthly. 87 (8): 640
(1980)
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I Framework

* The cake Is some set X.

* Each player has a normalized measure on X,
representing how he values each possible piece
of cake.

* The value of two disjoint pieces of cake is the
sum of the values of the pieces.

* The measure Is non-negative. It's never bad to
have more cake!

* The measure Is atomless, no single point has
non-zero value.
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Hidden assumption: absolute continuity.

Imagine a cake
bland as cardboard, but with
delicious frosting.

- The moving knife procedure fails.

9/17



I Better than fair. |

Imagine a cake, one half with anchovies and
one half with cashew nuts (and try not to be

sick).

Suppose that | like cashew nuts, but I'm
allergic to seafood. And you like anchovies,

but you're allergic to nuts.

The “l cut, you choose” protocol might give us
a fair division, but it's hardly the best one.

* Adivision is weak Pareto optimal if
there is no division that is better for
everyone.

* Adivision is strong Pareto optimal if
there is no division that is better for at
least one person and no worse for the

rest.
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I Surplus Procedure

Goal: If possible, give both players more than 50%.
* Both players tell their measure to a referee.
* The referee determines the medians: a and b.

* The referee cuts the cake at a specific point ¢ In
between a and b.

Challenge: How does one decide ¢? One option:

Solution should be

e Fair

* Envy-free

* Relatively equitable
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I Disconnected pieces?

If we allow more than two pieces the surplus

procedure is not optimal!
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I Liars take the cake.

The surplus procedure is not strategy-proof.
Lying can give a player a risk-free advantage.

Recall the cut point formula:

v1(a,c) __ w2 (c,b)
v1(a,b) va(a,b)
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I More players?

Stromquist’s moving knifes procedure does not
generalize to more than three players.

Envy-free procedure for n players does exist.”
This solution has a big flaw, it has unbounded runtime.
In fact: Theorem (Stromquist™)

-There is no bounded algorithm that gives an envy-free
connected division of a one-dimensional cake for three
or more players.

*F. E. Su, Rental Harmony: Sperner’s lemma in fair division, Amer. Math. Monthly 106 (1999) 930-942
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I Bounded proportional division

Dubins and Spanier’s moving knife is not finite either,
but has a finite analog.
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Disconnected pieces?

* n=3: Selfridge-Conway" finds an envy-free
distribution in a finite number of steps with at
most five cuts.

* Arbitrary n: Aziz and Mackenzie™ n

n

*]. Robertson, W. Webb, Cake-Cutting Algorithms: Be Fair If You Can (1998)

**H. Aziz, S. Mackenzie, A Discrete and Bounded Envy-free Cake Cutting Protocol for Any Number of
Agents, Proc. of the 48th Annual ACM SIGACT Sym. on Theory of Computing - STOC (2016) p. 454
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I Application: Politics

“Compromise is the art of dividing a cake
In such a way that everyone believes he
has the biggest piece.”

- Ludwig Erhard
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