

# **Spinors on loop space**

Peter Kristel Joint work with Konrad Waldorf

Greifswald University

May 17, 2019







- 1. Reductions and lifts of the frame bundle
- 2. Clifford algebras and Fock spaces
- 3. Representing  $\widetilde{LSpin}(d)$  in Fock space
- 4. Fusion of Fock spaces
- 5. Locality

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

# The Whitehead tower of O(d)

#### Homotopy groups of O(d) for d = 3 and $d \ge 5$

$$k \qquad \mathbf{0} \qquad \mathbf{1} \qquad \mathbf{2} \qquad \mathbf{3} \qquad \dots \\ \pi_k(\mathbf{O}(d)) \qquad \mathbb{Z}_2 \qquad \mathbb{Z}_2 \qquad \mathbf{0} \qquad \mathbb{Z} \qquad \dots$$

#### The Whitehead tower

$$O(d) \leftarrow SO(d) \leftarrow Spin(d) \leftarrow \dots$$

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

# The Whitehead tower of O(d)

#### Homotopy groups of O(d) for d = 3 and $d \ge 5$

$$k \qquad \mathbf{0} \qquad \mathbf{1} \qquad \mathbf{2} \qquad \mathbf{3} \qquad \dots \\ \pi_k(\mathbf{O}(d)) \qquad \mathbb{Z}_2 \qquad \mathbb{Z}_2 \qquad \mathbf{0} \qquad \mathbb{Z} \qquad \dots$$

#### The Whitehead tower

 $O(d) \leftarrow SO(d) \leftarrow Spin(d) \leftarrow String(d) \leftarrow \dots$ 

String(d) is not a finite dimensional Lie group. There are models: Fréchet Lie group, smooth 2-group...

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

# Reduction and lifts



G(M) is a principal *G*-bundle. Horizontal arrows are equivariant. Morally, a string structure is a lift:



Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

### Characteristic classes

|             | SO                             | Spin                           | String                        |
|-------------|--------------------------------|--------------------------------|-------------------------------|
| Obstruction | $w_1 \in H^1(M, \mathbb{Z}_2)$ | $w_2 \in H^2(M, \mathbb{Z}_2)$ | $p_1/2 \in H^4(M,\mathbb{Z})$ |
| Enumeration | $H^0(M,\mathbb{Z}_2)$          | $H^1(M,\mathbb{Z}_2)$          | $H^3(M,\mathbb{Z})$           |

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 

Fusion of Fock spaces

Locality 0000000

# Transgression to loop space

$$H^4(M,\mathbb{Z}) \xrightarrow{\operatorname{ev}^*} H^4(S^1 \times LM,\mathbb{Z}) \xrightarrow{\int \mathrm{d}\, t} H^3(LM,\mathbb{Z}),$$

$$p_1/2 \longmapsto \lambda$$

Killingback:  $\lambda$  obstructs



$$\mathbf{1} \to \mathrm{U}(1) \to \widetilde{L\operatorname{Spin}}(d) \to L\operatorname{Spin}(d) \to \mathbf{1}$$

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

# Vector bundles

#### Associated vector bundles

| G                 | O(d)             | SO(d)            | $\operatorname{Spin}(d)$ | $\widetilde{L\operatorname{Spin}}(d)$ | $\operatorname{String}(d)$ |
|-------------------|------------------|------------------|--------------------------|---------------------------------------|----------------------------|
| V                 | $\mathbb{R}^{d}$ | $\mathbb{R}^{d}$ | $\Delta_d$               | ??                                    | ??                         |
| $G(M) \times_G V$ | TM               | TM               | $\mathbb{S}(M)$          | ??                                    | ??                         |

What we expect  $String(M) \times_{String(d)} V$  to be depends on the model of String(d). Infinite dimensional vector bundle, 2-vector bundle, ...

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

# Vector bundles

#### Associated vector bundles

| G                 | O(d)           | SO(d)            | $\operatorname{Spin}(d)$ | $\widetilde{L\operatorname{Spin}}(d)$ | $\operatorname{String}(d)$ |
|-------------------|----------------|------------------|--------------------------|---------------------------------------|----------------------------|
| V                 | $\mathbb{R}^d$ | $\mathbb{R}^{d}$ | $\Delta_d$               | ??                                    | ??                         |
| $G(M) \times_G V$ | TM             | TM               | $\mathbb{S}(M)$          | ??                                    | ??                         |

What we expect  $String(M) \times_{String(d)} V$  to be depends on the model of String(d). Infinite dimensional vector bundle, 2-vector bundle, ...

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality

#### Reductions and lifts of the frame bundle

#### 2. Clifford algebras and Fock spaces

# Representing Δ Spin(d) in Fock space Fusion of Fock spaces

#### 5. Locality

Clifford algebras

Representing L Spin(d) 00000

Fusion of Fock spaces

Locality 0000000

# Infinite dimensional Clifford algebras

V a complex Hilbert space, and  $\alpha:V\to V$  a real structure, i.e. an isometry satisfying

 $\alpha^2 = 1$ , and  $\alpha(\lambda v) = \overline{\lambda}\alpha(v), \quad \lambda \in \mathbb{C}, v \in V.$ 

If A is a C<sup>\*</sup> algebra, then  $f: V \to A$  is a *Clifford* map if

$$f(v)^* = f(\alpha(v)), \text{ and } f(v)f(w) + f(w)f(v) = \langle v, \alpha(w) \rangle \mathbf{1}, \quad v, w \in V.$$

#### Definition: Clifford C\* algebra

The *Clifford*  $C^*$  *algebra* Cl(V) is the universal  $C^*$  algebra through which any Clifford map factors. I.e. if  $f: V \to A$  is a Clifford map, then there exists a unique algebra homomorphism  $F: Cl(V) \to A$  extending f.

Clifford algebras

Representing L Spin(d) 00000

Fusion of Fock spaces

Locality

# Fock spaces

#### **Definition: Lagrangians**

A subspace  $L \subset V$  is Lagrangian if

- $V = L \oplus \alpha(L)$ ,
- $\langle v, \alpha(w) \rangle = 0$ , for all  $v, w \in L$ .

Identify  $\alpha(L) \simeq L^*$ , through  $w \mapsto \langle \alpha(w), \bullet \rangle$ .

#### Definition: Fock representation

The *Fock space*  $\mathcal{F}$  is the Hilbert completion of the exterior algebra  $\Lambda L$ . The map  $\pi : L \oplus \alpha(L) \to \mathcal{B}(\mathcal{F}), (v, w) \mapsto v \land \bullet + \iota_w$  is a Clifford map. Its extension  $\pi : \operatorname{Cl}(V) \to \mathcal{B}(\mathcal{F})$  is the *Fock representation*.

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

# Bogoliubov transformations & 2<sup>nd</sup> quantization

Set  $O(V) := \{g \in U(V) \mid g\alpha = \alpha g\}$ . If  $g \in O(V)$ , then  $V \xrightarrow{g} V \to Cl(V)$  is a Clifford map. Write  $\theta_g \in Aut(Cl(V))$  for its extension.

Question: When is  $\theta_g$  implementable? I.e. when does there exist a  $U \in U(\mathcal{F})$  such that

$$U\pi(a)U^* = \pi(\theta_g a), \quad a \in \operatorname{Cl}(V).$$

Segal-Shale-Stinespring: Decompose g with respect to  $V = L \oplus \alpha(L)$ :

$$g = \begin{pmatrix} g_1 & g_2 \\ \alpha g_2 \alpha & \alpha g_1 \alpha \end{pmatrix},$$

then  $\theta_g$  is implementable if and only if  $g_2 : \alpha(L) \to L$  is Hilbert-Schmidt.

Clifford algebras

Representing L Spin(d) 00000

Fusion of Fock spaces

Locality 0000000

# A projective representation

Definition: Restricted orthogonal group

The restricted orthogonal group is

 $O_{\mathsf{res}}(V) := \{g \in O(V) \mid g \text{ is implementable}\}.$ 

If  $g \in O_{res}(V)$ , and U implements g, then so does  $\lambda U$ , for  $\lambda \in U(1)$ . Hence,  $O_{res}(V)$  acts projectively in  $\mathcal{F}$ . This gives a central extension

$$\mathbf{1} \to \mathrm{U}(1) \to \mathrm{Imp}(V) \to \mathrm{O}_{\mathsf{res}}(V) \to \mathbf{1}.$$

Clifford algebras

Representing  $L \widetilde{\text{Spin}}(d)$ •0000 Fusion of Fock spaces

Locality

Reductions and lifts of the frame bundle

2. Clifford algebras and Fock spaces

3. Representing  $L \operatorname{Spin}(d)$  in Fock space

4. Fusion of Fock space:

5. Locality

Clifford algebras

Representing L Spin(d)0000 Fusion of Fock spaces

Locality 0000000

# The odd spinors on the circle

#### The Hilbert space

Set  $V := L^2(S^1, \mathbb{C}^d)$ . An (unorthodox) orthonormal basis of V is

$$\xi_{n,j}: e^{i\varphi} \mapsto e^{i(n+1/2)\varphi} e_j, \qquad \varphi \in [0, 2\pi]$$

where  $n \in \mathbb{Z}$  and  $\{e_j\}_{j=1,...,d}$  the standard basis of  $\mathbb{C}^d$ . Define the real structure  $\alpha$  as point-wise complex conjugation. Have  $\alpha(\xi_{n,j}) = \xi_{-n-1,j}$ .

Let  $\mathbb{S} \to S^1$  be the odd spinor bundle on the circle. The basis  $\xi_{n,j}$ looks more natural when V is identified with  $L^2(S^1, \mathbb{S} \otimes \mathbb{C}^d)$ .

Clifford algebras

Representing L Spin(d)

Fusion of Fock spaces

Locality

# A Lagrangian

Compute for  $n, m \ge 0$  and j, l = 1, ..., d,

$$\begin{split} \xi_{n,j}, \alpha(\xi_{m,l}) \rangle &= \langle \xi_{n,j}, \xi_{-m-1,l} \rangle \\ &= \delta_{n,-m-1} \, \delta_{j,l} \\ &= 0. \end{split} \qquad \begin{aligned} \xi' \text{s are orthonormal} \\ &n \neq -m-1 \end{split}$$

#### Definition: Atiyah-Patodi-Singer (APS) Lagrangian

The *APS Lagrangian*  $L \subset V$  is the closure of the span of the vectors  $\xi_{n,j}$  with  $n \ge 0$  and j = 1, ..., d.

Have a Clifford algebra Cl(V), and a Fock space  $\Lambda L^{\langle \cdot, \cdot \rangle}$ .

Clifford algebras

Representing  $L \widetilde{\mathrm{Spin}}(d)$ 

Fusion of Fock spaces

Locality 0000000

# The basic central extension of $L \operatorname{Spin}(d)$

#### The action of $L \operatorname{SO}(d)$

The loop group  $L \operatorname{SO}(d)$  acts on  $V = L^2(S^1, \mathbb{C}^d)$  pointwise. Pressley-Segal:  $L \operatorname{SO}(d) \to \operatorname{O}_{\operatorname{res}}(V)$ .

#### Lemma

The pullback

$$\widetilde{L \operatorname{Spin}}(d) \longrightarrow \operatorname{Imp}(V) \downarrow \qquad \qquad \downarrow \\ L \operatorname{Spin}(d) \longrightarrow L \operatorname{SO}(d) \longrightarrow \operatorname{O}_{\mathsf{res}}(V)$$

is the basic central extension of L Spin(d)

Clifford algebras

Representing L Spin(d)

Fusion of Fock spaces

Locality 0000000

# Associated bundles

Have representations  $\widetilde{L} \operatorname{Spin}(d) \circlearrowright \mathcal{F}$  and  $L \operatorname{Spin}(d) \circlearrowright \operatorname{Cl}(V)$ .

#### **Clifford bundle**

Define the Clifford bundle

 $L \operatorname{Spin}(M) \times_{L \operatorname{Spin}(d)} \operatorname{Cl}(V) =: \operatorname{Cl}(LM) \to LM$ . Each fibre is a Clifford algebra.

#### Fock bundle

Define the Fock bundle  $\widetilde{L\operatorname{Spin}}(M) \times_{\widetilde{L\operatorname{Spin}}(d)} \mathcal{F} =: \mathcal{F}(LM) \to LM$ . Each fibre is a Fock space.

The Clifford bundle acts on the Fock bundle fibrewise.

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality

#### Reductions and lifts of the frame bundle

- 2. Clifford algebras and Fock spaces
- 3. Representing  $\Delta$  Spin(d) in Fock space
- 4. Fusion of Fock spaces
- 5. Locality

Clifford algebras

Representing L Spin(d) 00000

Fusion of Fock spaces

Locality 0000000

# Fock space as a bimodule

Set  $V_{\pm} := \{f \in V \mid \operatorname{supp}(f) \subseteq I_{\pm}\}$ , then  $\operatorname{Cl}(V) = \operatorname{Cl}(V_{-}) \otimes \operatorname{Cl}(V_{+})$ . And  $\mathcal{F}$  becomes a graded  $\operatorname{Cl}(V_{-})\operatorname{-Cl}(V_{+})^{\operatorname{op}}$  bimodule.

Want to consider  $\mathcal{F} \otimes_{\operatorname{Cl}(V_{\pm})} \mathcal{F}$ , as a  $\operatorname{Cl}(V_{-})$ - $\operatorname{Cl}(V_{+})^{\operatorname{op}}$  bimodule. There are two problems:

- Need an isomorphism  $\operatorname{Cl}(V_{-}) \to \operatorname{Cl}(V_{+})^{\operatorname{op}}$ .
- The algebraic tensor product  $\mathcal{F}\otimes_{Cl(V_{\pm})}\mathcal{F}$  will in general not be a Hilbert space.

Solution: Work with tensor product of bimodules for *von Neumann algebras* instead of algebras.

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality 0000000

# Von Neumann algebras

#### Definition

If  $A \subseteq \mathcal{B}(H)$  is a subalgebra of the bounded operators on H then the *commutant* of A is defined to be

$$A' := \{ x \in \mathcal{B}(H) \mid [x, a] = 0 \text{ for all } a \in A \}.$$

#### Definition

A *von Neumann algebra* A is a subalgebra of  $\mathcal{B}(H)$  for some Hilbert space H with the property that A'' = A.

If  $A \subseteq \mathcal{B}(H)$ , then A'' = (A'')'' is a von Neumann algebra and  $A \subseteq A''$ . A module for a von Neumann algebra is a Hilbert space in which the von Neumann algebra acts. Representing  $L \operatorname{Spin}(d)$ 00000

# The standard form of a von Neumann algebra

Let  $B \subseteq \mathcal{B}(H)$  be a von Neumann algebra. Let  $\Omega \in H$  be a vector in H with the property that  $B\Omega$  is dense in H and that  $b\Omega = 0 \Rightarrow b = 0$  for all  $b \in B$ .

#### Definition

The standard form  $L^2_{\Omega}(B)$  is defined to be the completion of B with respect to the inner product

 $B \times B \to \mathbb{C}, \quad (b, b') \mapsto (b\Omega, b'\Omega).$ 

Multiplication on *B* extends to a left action:  $B \times L^2_{\Omega}(B) \to L^2_{\Omega}(B)$ .

Using Tomita-Takesaki theory, the Hilbert space  $L^2_{\Omega}(B)$  is in a canonical way a *B*-*B* bimodule.

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality

# Connes fusion

- A, B, C von Neumann algebras
- *H* an *A*-*B* bimodule
- K a B-C bimodule

Then  $H \boxtimes_B K$  is an *A*-*C* bimodule, called the Connes fusion of *H* with *K*.

The standard form of B is the unit for Connes fusion, i.e.

 $L^2_{\Omega}(B) \boxtimes_B K \cong K.$ 

Clifford algebras

Representing L Spin(d) 00000

Fusion of Fock spaces

Locality

# Fusion of Fock spaces

We define a conjugate linear involution  $\tau$  of V by

$$(\tau f)(z) = \overline{f(\overline{z})}, \quad f \in V, z \in S^1.$$

The map  $\tau$  has the following nice properties:

• 
$$\tau(L) = L$$

•  $\operatorname{Cl}(V_{-})'' \to (\operatorname{Cl}(V_{+})'')^{\operatorname{op}}, a \mapsto \Lambda_{\tau} a^* \Lambda_{\tau}$  is an isomorphism.

Using the above isomorphism we turn the  $\operatorname{Cl}(V_-)''$ - $(\operatorname{Cl}(V_+)'')^{\operatorname{op}}$  bimodule  $\mathcal{F}$  into a  $\operatorname{Cl}(V_-)''$ - $\operatorname{Cl}(V_-)''$  bimodule  $\mathcal{F}_-$ .

#### Lemma

 $\mathcal{F}_{-} \cong L^{2}_{\Omega}(\mathrm{Cl}(V_{-})'')$  for  $\Omega = 1 \in \mathbb{C} \subset \mathcal{F}_{-}$  and hence  $\mathcal{F}_{-} \boxtimes_{\mathrm{Cl}(V_{-})''} \mathcal{F} \cong \mathcal{F}$ 

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality •000000

#### Reductions and lifts of the frame bundle

2. Clifford algebras and Fock spaces

# 3. Representing $\Delta$ Spin (d) in Fock space

- 4. Fusion of Fock spaces
- 5. Locality

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces



# Smooth loop space of a manifold

#### Definition

The space of smooth loops/paths with sitting instants is

 $LM = \{ \gamma \in C^{\infty}(S^1, M) \mid \gamma \text{ is locally constant at } 0 \text{ and } \pi \},\$  $PM = \{ \beta \in C^{\infty}([0, \pi], M) \mid \beta \text{ is locally constant at } 0 \text{ and } \pi \}.$ 

LM and PM are diffeological spaces. Gluing is well defined:



Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality

# Locality of $\mathcal{F}(LM)$

- $\mathcal{F}(LM)$  is a bundle over LM.
- But we started with a string structure on M.
- Does  $\mathcal{F}(LM)$  see the underlying space M?

# How do fibres over glueable loops relate?

Claim:

$$\mathcal{F}(LM)_{\gamma_1} \boxtimes \mathcal{F}(LM)_{\gamma_2} \xrightarrow{\simeq} \mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2}$$

 $\boxtimes$  is Connes fusion.

Clifford algebras

Representing L Spin(d) 00000

Fusion of Fock spaces

Locality

# Locality of $\operatorname{Cl}(LM)$

- $V_{\pm} := \{ f \in V \mid \operatorname{supp}(f) \subseteq I_{\pm} \}.$
- $P \operatorname{Spin}(d) \circlearrowright \operatorname{Cl}(V_{\pm}).$
- $P\operatorname{Spin}(M) \times_{P\operatorname{Spin}(d)} \operatorname{Cl}(V_{\pm}) =: \operatorname{Cl}_{\pm}(PM) \to PM.$

#### Locality of Cl(LM)

 $\operatorname{Cl}_+(PM)\hat{\otimes}_{\operatorname{ev}}\operatorname{Cl}_-(PM)\simeq\operatorname{Cl}(LM).$ 

#### First sign of locality of $\mathcal{F}(LM)$

Fix  $\beta_1 \cup \beta_2 = \gamma \in LM$ , for  $\beta_1, \beta_2 \in PM$ , then  $\mathcal{F}(LM)_{\gamma}$  is a bimodule:

 $\operatorname{Cl}_+(PM)_{\beta_1} \circlearrowright \mathcal{F}(LM)_{\gamma} \circlearrowright \operatorname{Cl}_-(PM)_{\beta_2}^{\operatorname{op}}.$ 

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality

# Locality of $\mathcal{F}(LM)$



#### Fusion of Fock spaces

Goal: Construct, for each triple  $(\beta_1, \beta_2, \beta_3)$ , an isomorphism

$$\mathcal{F}(LM)_{\gamma_1} \boxtimes_{\mathrm{Cl}_{\pm}(PM)_{\beta_2}} \mathcal{F}(LM)_{\gamma_2} \xrightarrow{\simeq} \mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2}.$$

The construction should be natural.

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality

# Sketch of construction

- We have a natural isomorphism of the canonical fibre:  $\mathcal{F}\boxtimes_{\mathrm{Cl}_{\pm}(V)}\mathcal{F}\overset{\simeq}{\longrightarrow}\mathcal{F}.$
- Find a map  $\mu$

$$\mathcal{F}(LM)_{\gamma_1} \boxtimes_{\operatorname{Cl}_{\pm}(PM)_{\beta_2}} \mathcal{F}(LM)_{\gamma_2} \qquad \mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2} \\ \downarrow^{(\varphi_1,\varphi_2)} \longmapsto^{\mu} \longrightarrow^{\varphi_3^{-1}}_{3} \uparrow^{\uparrow} \\ \mathcal{F} \boxtimes \mathcal{F} \qquad \mathcal{F} \qquad \mathcal{F}$$

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces



# Sketch of construction

- We have a natural isomorphism of the canonical fibre:  $\mathcal{F}\boxtimes_{\mathrm{Cl}_{\pm}(V)}\mathcal{F} \xrightarrow{\simeq} \mathcal{F}.$
- Find a map  $\mu$ , such that the top arrow in the diagram

$$\mathcal{F}(LM)_{\gamma_1} \boxtimes_{\mathrm{Cl}_{\pm}(PM)_{\beta_2}} \mathcal{F}(LM)_{\gamma_2} \longrightarrow \mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2}$$

$$\downarrow^{(\varphi_1,\varphi_2)} \longmapsto^{\mu} \longrightarrow^{\varphi_3^{-1}}_{3} \uparrow^{}_{\mathcal{F}} \longrightarrow \mathcal{F}$$

does not depend on the choice of  $(\varphi_1, \varphi_2)$ 

Clifford algebras

Representing  $L \operatorname{Spin}(d)$ 00000 Fusion of Fock spaces

Locality

# **Fusing trivializations**

Given:  $\beta_i \in PM$ , i = 1, 2, 3.

 $\gamma_1 := \beta_1 \cup \beta_2 \qquad \qquad \gamma_2 := \beta_2 \cup \beta_3 \qquad \qquad \gamma_3 := \beta_1 \cup \beta_3$ 

- Pick lifts  $\widetilde{L} \operatorname{Spin}(M) \ni p_i \mapsto \gamma_i \in LM$ , (i = 1, 2).
- Waldorf: There is a map  $(p_1, p_2) \mapsto p_3 \ni \widetilde{L\operatorname{Spin}}(M)_{\gamma_3}$ .

• Set 
$$\mathcal{F}(LM)_{\gamma_i} \ni [p_i, v] \xrightarrow{\varphi_i} v \in \mathcal{F}.$$

#### Summary

- Described a representation  $\widetilde{L\operatorname{Spin}}(d) \circlearrowright \mathcal{F}$ .
- Given a manifold M, equipped with a string structure, constructed a vector bundle  $\mathcal{F} \rightarrow LM$ .
- Constructed a map  $\mathcal{F}(LM)_{\gamma_1} \boxtimes_{\operatorname{Cl}_{\pm}(PM)_{\beta_2}} \mathcal{F}(LM)_{\gamma_2} \xrightarrow{\simeq} \mathcal{F}(LM)_{\gamma_1 \boxtimes \gamma_2}$  expressing that  $\mathcal{F} \to LM$  is *local* in M.

#### Further work

- "Untransgress" the bundle  $\mathcal{F} \to LM$  to a (2-vector?) bundle over M.
- The diffeomorphism group of the circle acts in LM. Lift this action to a bundle action  $\mathcal{F} \rightarrow LM$ .
- Equip  $\mathcal{F} \to LM$  with a notion of parallel transport over surfaces.