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Overview

1. Reductions and lifts of the frame bundle

2. Clifford algebras and Fock spaces

3. Representing ˜LSpin(d) in Fock space

4. Fusion of Fock spaces

5. Locality



Reductions and lifts Clifford algebras Representing ˜L Spin(d) Fusion of Fock spaces Locality

The Whitehead tower of O(d)

Homotopy groups of O(d) for d = 3 and d > 5

k 0 1 2 3 . . .
πk(O(d)) Z2 Z2 0 Z . . .

The Whitehead tower

O(d)← SO(d)← Spin(d)← . . .
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Reductions and lifts Clifford algebras Representing ˜L Spin(d) Fusion of Fock spaces Locality

The Whitehead tower of O(d)

Homotopy groups of O(d) for d = 3 and d > 5

k 0 1 2 3 . . .
πk(O(d)) Z2 Z2 0 Z . . .

The Whitehead tower

O(d)← SO(d)← Spin(d)← String(d)← . . .

String(d) is not a finite dimensional Lie group.
There are models: Fréchet Lie group, smooth 2-group...
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Reductions and lifts Clifford algebras Representing ˜L Spin(d) Fusion of Fock spaces Locality

Reduction and lifts

Riemannian metric Orientation Spin structure

O(M) SO(M) Spin(M)

M

G(M) is a principal G-bundle. Horizontal arrows are equivariant.
Morally, a string structure is a lift:

Spin(M) String(M)

M
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Characteristic classes

SO Spin String

Obstruction w1 ∈ H1(M,Z2) w2 ∈ H2(M,Z2) p1/2 ∈ H4(M,Z)

Enumeration H0(M,Z2) H1(M,Z2) H3(M,Z)
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Transgression to loop space

H4(M,Z) H4(S1 × LM,Z) H3(LM,Z),

p1/2 λ

ev∗
∫

d t

Killingback: λ obstructs

LSpin(M) L̃Spin(M)

LM

1→ U(1)→ L̃Spin(d)→ LSpin(d)→ 1.
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Vector bundles

Associated vector bundles

G O(d) SO(d) Spin(d) L̃Spin(d) String(d)

V Rd Rd ∆d ?? ??
G(M)×G V TM TM S(M) ?? ??

What we expect String(M)×String(d) V to be depends on the model
of String(d).
Infinite dimensional vector bundle, 2-vector bundle, ...
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Infinite dimensional Clifford algebras

V a complex Hilbert space, and α : V → V a real structure, i.e. an
isometry satisfying

α2 = 1, and α(λv) = λα(v), λ ∈ C, v ∈ V.

If A is a C∗ algebra, then f : V → A is a Clifford map if

f(v)∗ = f(α(v)), and f(v)f(w) + f(w)f(v) = 〈v, α(w)〉1, v, w ∈ V.

Definition: Clifford C∗ algebra
The Clifford C∗ algebra Cl(V ) is the universal C∗ algebra through
which any Clifford map factors. I.e. if f : V → A is a Clifford map,
then there exists a unique algebra homomorphism F : Cl(V )→ A
extending f .
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Fock spaces

Definition: Lagrangians
A subspace L ⊂ V is Lagrangian if
• V = L⊕ α(L),
• 〈v, α(w)〉 = 0, for all v, w ∈ L.

Identify α(L) ' L∗, through w 7→ 〈α(w), •〉.

Definition: Fock representation
The Fock space F is the Hilbert completion of the exterior algebra
ΛL. The map π : L⊕ α(L)→ B(F), (v, w) 7→ v ∧ •+ ιw is a Clifford
map. Its extension π : Cl(V )→ B(F) is the Fock representation.
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Bogoliubov transformations & 2nd quantization

Set O(V ) := {g ∈ U(V ) | gα = αg}.
If g ∈ O(V ), then V

g−→ V → Cl(V ) is a Clifford map. Write
θg ∈ Aut(Cl(V )) for its extension.

Question: When is θg implementable? I.e. when does there exist a
U ∈ U(F) such that

Uπ(a)U∗ = π(θga), a ∈ Cl(V ).

Segal-Shale-Stinespring: Decompose g with respect to
V = L⊕ α(L):

g =

(
g1 g2

αg2α αg1α

)
,

then θg is implementable if and only if g2 : α(L)→ L is
Hilbert-Schmidt.
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A projective representation

Definition: Restricted orthogonal group
The restricted orthogonal group is

Ores(V ) := {g ∈ O(V ) | g is implementable}.

If g ∈ Ores(V ), and U implements g, then so does λU , for λ ∈ U(1).
Hence, Ores(V ) acts projectively in F . This gives a central extension

1→ U(1)→ Imp(V )→ Ores(V )→ 1.
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The odd spinors on the circle

The Hilbert space
Set V := L2(S1,Cd). An (unorthodox) orthonormal basis of V is

ξn,j : eiϕ 7→ ei(n+1/2)ϕej , ϕ ∈ [0, 2π]

where n ∈ Z and {ej}j=1,...,d the standard basis of Cd.
Define the real structure α as point-wise complex conjugation. Have
α(ξn,j) = ξ−n−1,j .

Let S→ S1 be the odd spinor bundle on the circle. The basis ξn,j
looks more natural when V is identified with L2(S1,S⊗ Cd).
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A Lagrangian

Compute for n,m > 0 and j, l = 1, ..., d,

〈ξn,j , α(ξm,l)〉 = 〈ξn,j , ξ−m−1,l〉
= δn,−m−1 δj,l ξ’s are orthonormal
= 0. n 6= −m− 1

Definition: Atiyah-Patodi-Singer (APS) Lagrangian
The APS Lagrangian L ⊂ V is the closure of the span of the vectors
ξn,j with n > 0 and j = 1, ..., d.

Have a Clifford algebra Cl(V ), and a Fock space ΛL〈·,·〉.
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The basic central extension of L Spin(d)

The action of L SO(d)

The loop group LSO(d) acts on V = L2(S1,Cd) pointwise.
Pressley-Segal: LSO(d)→ Ores(V ).

Lemma
The pullback

L̃Spin(d) Imp(V )

LSpin(d) LSO(d) Ores(V )

is the basic central extension of LSpin(d)
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Associated bundles

Have representations L̃Spin(d) � F and LSpin(d) � Cl(V ).

Clifford bundle
Define the Clifford bundle
LSpin(M)×L Spin(d) Cl(V ) =: Cl(LM)→ LM . Each fibre is a Clifford
algebra.

Fock bundle

Define the Fock bundle L̃Spin(M)×
L̃ Spin(d)

F =: F(LM)→ LM .
Each fibre is a Fock space.

The Clifford bundle acts on the Fock bundle fibrewise.
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Fock space as a bimodule

Set V± := {f ∈ V | supp(f) ⊆ I±}, then Cl(V ) = Cl(V−)⊗ Cl(V+).
And F becomes a graded Cl(V−)-Cl(V+)op bimodule.

Want to consider F ⊗Cl(V±) F , as a Cl(V−)-Cl(V+)op bimodule. There
are two problems:
• Need an isomorphism Cl(V−)→ Cl(V+)op.
• The algebraic tensor product F ⊗Cl(V±) F will in general not be a

Hilbert space.
Solution: Work with tensor product of bimodules for von Neumann
algebras instead of algebras.
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Von Neumann algebras

Definition
If A ⊆ B(H) is a subalgebra of the bounded operators on H then the
commutant of A is defined to be

A′ := {x ∈ B(H) | [x, a] = 0 for all a ∈ A}.

Definition
A von Neumann algebra A is a subalgebra of B(H) for some Hilbert
space H with the property that A′′ = A.

If A ⊆ B(H), then A′′ = (A′′)′′ is a von Neumann algebra and A ⊆ A′′.
A module for a von Neumann algebra is a Hilbert space in which the
von Neumann algebra acts.
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The standard form of a von Neumann algebra

Let B ⊆ B(H) be a von Neumann algebra. Let Ω ∈ H be a vector in
H with the property that BΩ is dense in H and that bΩ = 0⇒ b = 0
for all b ∈ B.

Definition
The standard form L2

Ω(B) is defined to be the completion of B with
respect to the inner product

B ×B → C, (b, b′) 7→ (bΩ, b′Ω).

Multiplication on B extends to a left action: B × L2
Ω(B)→ L2

Ω(B).

Using Tomita-Takesaki theory, the Hilbert space L2
Ω(B) is in a

canonical way a B-B bimodule.
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Connes fusion

• A,B,C von Neumann algebras
• H an A-B bimodule
• K a B-C bimodule

Then H �B K is an A-C bimodule, called the Connes fusion of H
with K.
The standard form of B is the unit for Connes fusion, i.e.

L2
Ω(B)�B K ∼= K.
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Fusion of Fock spaces

We define a conjugate linear involution τ of V by

(τf)(z) = f(z), f ∈ V, z ∈ S1.

The map τ has the following nice properties:
• τ(L) = L

• Cl(V−)′′ → (Cl(V+)′′)op, a 7→ Λτa
∗Λτ is an isomorphism.

Using the above isomorphism we turn the Cl(V−)′′-(Cl(V+)′′)op

bimodule F into a Cl(V−)′′-Cl(V−)′′ bimodule F−.

Lemma
F− ∼= L2

Ω(Cl(V−)′′) for Ω = 1 ∈ C ⊂ F− and hence F−�Cl(V−)′′ F ∼= F
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Smooth loop space of a manifold

Definition
The space of smooth loops/paths with sitting instants is

LM = {γ ∈ C∞(S1,M) | γ is locally constant at 0 and π},
PM = {β ∈ C∞([0, π],M) | β is locally constant at 0 and π}.

LM and PM are diffeological spaces. Gluing is well defined:
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Locality of F(LM)

• F(LM) is a bundle over LM .
• But we started with a string structure on M .
• Does F(LM) see the underlying space M?

How do fibres over glueable loops relate?
Claim:

F(LM)γ1 � F(LM)γ2
'−→ F(LM)γ1�γ2

� is Connes fusion.
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Locality of Cl(LM)

• V± := {f ∈ V | supp(f) ⊆ I±}.
• P Spin(d) � Cl(V±).
• P Spin(M)×P Spin(d) Cl(V±) =: Cl±(PM)→ PM .

Locality of Cl(LM)

Cl+(PM)⊗̂ev Cl−(PM) ' Cl(LM).

First sign of locality of F(LM)

Fix β1 ∪ β2 = γ ∈ LM , for β1, β2 ∈ PM , then F(LM)γ is a bimodule:

Cl+(PM)β1 � F(LM)γ 	 Cl−(PM)op
β2
.
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Locality of F(LM)

Fusion of Fock spaces
Goal: Construct, for each triple (β1, β2, β3), an isomorphism

F(LM)γ1 �Cl±(PM)β2
F(LM)γ2

'−→ F(LM)γ1�γ2 .

The construction should be natural.
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Sketch of construction

• We have a natural isomorphism of the canonical fibre:
F �Cl±(V ) F

'−→ F .
• Find a map µ

F(LM)γ1 �Cl±(PM)β2
F(LM)γ2 F(LM)γ1�γ2

F � F F

(ϕ1,ϕ2) ϕ−1
3

µ
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Sketch of construction

• We have a natural isomorphism of the canonical fibre:
F �Cl±(V ) F

'−→ F .
• Find a map µ, such that the top arrow in the diagram

F(LM)γ1 �Cl±(PM)β2
F(LM)γ2 F(LM)γ1�γ2

F � F F

(ϕ1,ϕ2) ϕ−1
3

µ

does not depend on the choice of (ϕ1, ϕ2)
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Fusing trivializations

Given: βi ∈ PM , i = 1, 2, 3.

γ1 := β1 ∪ β2 γ2 := β2 ∪ β3 γ3 := β1 ∪ β3

• Pick lifts L̃Spin(M) 3 pi 7→ γi ∈ LM , (i = 1, 2).

• Waldorf: There is a map (p1, p2) 7→ p3 3 L̃Spin(M)γ3 .

• Set F(LM)γi 3 [pi, v]
ϕi7−→ v ∈ F .
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Summary

• Described a representation L̃Spin(d) � F .
• Given a manifold M , equipped with a string structure,

constructed a vector bundle F → LM .
• Constructed a map
F(LM)γ1 �Cl±(PM)β2

F(LM)γ2
'−→ F(LM)γ1�γ2 expressing that

F → LM is local in M .

Further work
• “Untransgress” the bundle F → LM to a (2-vector?) bundle over
M .

• The diffeomorphism group of the circle acts in LM . Lift this
action to a bundle action F → LM .

• Equip F → LM with a notion of parallel transport over surfaces.
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