Operator algebras: Exercises 5

January 28, 2019

Read each exercise completely before you start, there are hints.

1 Causal complement in Minkowski spacetime

Let $S \subseteq \mathbb{R}^n$. Then we define $J^+(S)$ to be the future of S, and we define $J^-(S)$ to be the past of S. We say that $S \subseteq \mathbb{R}^n$ is *causally disjoint* from $S' \subseteq \mathbb{R}^n$, denoted $S \perp S'$, if

$$(J^+(S) \cup J^-(S)) \cap S' = \emptyset.$$

Prove that \perp is a causal disjointness relation. Let g be the Minkowski metric on \mathbb{R}^n . Show that the function

$$f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R},$$
$$(x, y) \mapsto g(x - y, y - x)$$

,

induces the causal complement

$$S^{\perp} := \mathbb{R}^n \setminus (J^+(S) \cup J^-(S)).$$

Prove that for every compact subset $A \subset \mathbb{R}^n$, the function

$$s_A : \mathbb{R}^n \to \mathbb{R},$$

 $y \mapsto \sup_{x \in A} f(x, y),$

assumes negative values.

Write $D_{x,y} \subset \mathbb{R}^n$ for the open double cone generated by $x, y \in \mathbb{R}^n$. Prove that the pair (\mathcal{I}, \perp) , with \mathcal{I} the collection of open bounded subsets of \mathbb{R}^n , is a causal index set, compatible with the topology. (Hint: Show that setting \mathcal{I}_0 to be the set of all open double cones $D_{x,y}$ does the trick.)

Show that the Poincaré group leaves the relation \perp invariant.

2 Causal net index on an infinite set

Let \mathcal{X} be an infinite set with a causal complement \bot , which additionally satisfies the following property:

There is a sequence $\{X_n\}_{n=1}^{\infty}$ of subsets $\emptyset \subseteq X_n \subsetneq \mathcal{X}$, which are pairwise distinct, (i.e. $X_i \neq X_j$ for $i \neq j$), and with $X_n^{\perp} \neq \emptyset$ for all n and $\bigcup_{n=1}^{\infty} X_n = \mathcal{X}$. Prove that the pair (\mathcal{I}_0, \perp) , where

$$\mathcal{I}_0 := \{ M \subsetneq \mathcal{X} \mid M \neq \emptyset, M \subseteq X_n \text{ for some } n \},\$$

is a causal index set.

3 A technical result

In the proof of the statement " ω is clustering if and only if $\mathcal{Z}_{\perp}^{\omega} = \mathbb{C}1$ " (Lanford-Ruelle). We have the used the following technical result:

Let \mathcal{N}_{κ} be a decreasing net of von Neumann algebras on a Hilbert space Hand define $\mathcal{N} = \bigcap_{\kappa} \mathcal{N}_{\kappa}$. Assume that $\Omega \in H$ is cyclic for \mathcal{N}' , and that there exists a net of elements $N_{\kappa} \in \mathcal{N}_{\kappa}$ such that the following weak limits exist

$$u = \lim_{\kappa} N_{\kappa} \Omega$$
 $u^* = \lim_{\kappa} N_{\kappa}^* \Omega.$

Then $u, u^* \in \operatorname{clo}(\mathcal{N}\Omega)$.

Prove this statement, using the following steps:

- Define $w = (u + u^*)/2$ and prove that for all $a \in \mathcal{N}'$ we have $\langle aw, \Omega \rangle = \langle a\Omega, w \rangle$.
- Set $P \in \mathcal{N}'$ to be the projection onto $\operatorname{clo}(\mathcal{N}\Omega)$. Prove that w Pw is orthogonal to the set of vectors $\mathcal{N}'\Omega$.
- Conclude that w Pw = 0. (Recall that Ω is cyclic for \mathcal{N}' .) And hence that $w = Pw \in \operatorname{clo}(\mathcal{N}\Omega)$.
- Argue similarly that

$$\frac{u-u^*}{2i} \in \operatorname{clo}(\mathcal{N}\Omega),$$

and finish the proof.

4 The C*-norm on $CAR(H, \Gamma)$

Let H be a Hilbert space equipped with an anti-unitary involution Γ . In the lecture we claimed that for all $h \in H$ we have

$$||A(h)|| = \frac{1}{\sqrt{2}} \left(||h||^2 + \left(||h||^4 - |\langle h, \Gamma h \rangle|^2 \right)^{1/2} \right)^{1/2}.$$

Prove this statement, following these steps:

• Prove that for all $h \in H$ we have

$$A(h)^{2} = \frac{1}{2} \langle h, \Gamma h \rangle 1,$$
$$(A(h)^{*})^{2} = \frac{1}{2} \overline{\langle h, \Gamma h \rangle} 1.$$

• Use this to prove that for all $h \in H$ we have

$$[A(h)^*, A(h)]_+^2 - [A(h)^*, A(h)]^2 = |\langle h, \Gamma h \rangle|^2.$$

• Conclude that

$$[A(h)^*, A(h)]^2 = (||h||^4 - |\langle h, \Gamma h \rangle|^2)$$

• From this, argue what the possibilities for the spectrum of $[A(h)^*, A(h)]$ are.

- If $[A(h)^*, A(h)]$ is a multiple of the identity, prove that it is zero.
- If $[A(h)^*, A(h)]$ is not a multiple of the identity, determine the spectrum of the self-adjoint operator $A(h)^*A(h)$ using what you know about the spectrum of $[A(h)^*, A(h)]$.
- Complete the proof.