Operator algebras: Exercises 5

January 28, 2019

Read each exercise completely before you start, there are hints.

1 Causal complement in Minkowski spacetime

Let $S \subseteq \mathbb{R}^{n}$. Then we define $J^{+}(S)$ to be the future of S, and we define $J^{-}(S)$ to be the past of S. We say that $S \subseteq \mathbb{R}^{n}$ is causally disjoint from $S^{\prime} \subseteq \mathbb{R}^{n}$, denoted $S \perp S^{\prime}$, if

$$
\left(J^{+}(S) \cup J^{-}(S)\right) \cap S^{\prime}=\emptyset
$$

Prove that \perp is a causal disjointness relation.
Let g be the Minkowski metric on \mathbb{R}^{n}. Show that the function

$$
\begin{aligned}
f: \mathbb{R}^{n} \times \mathbb{R}^{n} & \rightarrow \mathbb{R}, \\
(x, y) & \mapsto g(x-y, y-x),
\end{aligned}
$$

induces the causal complement

$$
S^{\perp}:=\mathbb{R}^{n} \backslash\left(J^{+}(S) \cup J^{-}(S)\right)
$$

Prove that for every compact subset $A \subset \mathbb{R}^{n}$, the function

$$
\begin{aligned}
s_{A}: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
y & \mapsto \sup _{x \in A} f(x, y)
\end{aligned}
$$

assumes negative values.
Write $D_{x, y} \subset \mathbb{R}^{n}$ for the open double cone generated by $x, y \in \mathbb{R}^{n}$. Prove that the pair (\mathcal{I}, \perp), with \mathcal{I} the collection of open bounded subsets of \mathbb{R}^{n}, is a causal index set, compatible with the topology. (Hint: Show that setting \mathcal{I}_{0} to be the set of all open double cones $D_{x, y}$ does the trick.)

Show that the Poincaré group leaves the relation \perp invariant.

2 Causal net index on an infinite set

Let \mathcal{X} be an infinite set with a causal complement \perp, which additionally satisfies the following property:

There is a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of subsets $\emptyset \subsetneq X_{n} \subsetneq \mathcal{X}$, which are pairwise distinct, (i.e. $X_{i} \neq X_{j}$ for $i \neq j$), and with $X_{n}^{\perp} \neq \emptyset$ for all n and $\cup_{n=1}^{\infty} X_{n}=\mathcal{X}$.

Prove that the pair $\left(\mathcal{I}_{0}, \perp\right)$, where

$$
\mathcal{I}_{0}:=\left\{M \subsetneq \mathcal{X} \mid M \neq \emptyset, M \subseteq X_{n} \text { for some } n\right\}
$$

is a causal index set.

3 A technical result

In the proof of the statement " ω is clustering if and only if $\mathcal{Z}_{\perp}^{\omega}=\mathbb{C} 1$ " (LanfordRuelle). We have the used the following technical result:

Let \mathcal{N}_{κ} be a decreasing net of von Neumann algebras on a Hilbert space H and define $\mathcal{N}=\cap_{\kappa} \mathcal{N}_{\kappa}$. Assume that $\Omega \in H$ is cyclic for \mathcal{N}^{\prime}, and that there exists a net of elements $N_{\kappa} \in \mathcal{N}_{\kappa}$ such that the following weak limits exist

$$
u=\lim _{\kappa} N_{\kappa} \Omega \quad u^{*}=\lim _{\kappa} N_{\kappa}^{*} \Omega .
$$

Then $u, u^{*} \in \operatorname{clo}(\mathcal{N} \Omega)$.
Prove this statement, using the following steps:

- Define $w=\left(u+u^{*}\right) / 2$ and prove that for all $a \in \mathcal{N}^{\prime}$ we have $\langle a w, \Omega\rangle=$ $\langle a \Omega, w\rangle$.
- Set $P \in \mathcal{N}^{\prime}$ to be the projection onto $\operatorname{clo}(\mathcal{N} \Omega)$. Prove that $w-P w$ is orthogonal to the set of vectors $\mathcal{N}^{\prime} \Omega$.
- Conclude that $w-P w=0$. (Recall that Ω is cyclic for \mathcal{N}^{\prime}.) And hence that $w=P w \in \operatorname{clo}(\mathcal{N} \Omega)$.
- Argue similarly that

$$
\frac{u-u^{*}}{2 i} \in \operatorname{clo}(\mathcal{N} \Omega)
$$

and finish the proof.

4 The C*-norm on $\operatorname{CAR}(H, \Gamma)$

Let H be a Hilbert space equipped with an anti-unitary involution Γ. In the lecture we claimed that for all $h \in H$ we have

$$
\|A(h)\|=\frac{1}{\sqrt{2}}\left(\|h\|^{2}+\left(\|h\|^{4}-|\langle h, \Gamma h\rangle|^{2}\right)^{1 / 2}\right)^{1 / 2}
$$

Prove this statement, following these steps:

- Prove that for all $h \in H$ we have

$$
\begin{aligned}
A(h)^{2} & =\frac{1}{2}\langle h, \Gamma h\rangle 1, \\
\left(A(h)^{*}\right)^{2} & =\frac{1}{2} \overline{\langle h, \Gamma h\rangle} 1 .
\end{aligned}
$$

- Use this to prove that for all $h \in H$ we have

$$
\left[A(h)^{*}, A(h)\right]_{+}^{2}-\left[A(h)^{*}, A(h)\right]^{2}=|\langle h, \Gamma h\rangle|^{2} .
$$

- Conclude that

$$
\left[A(h)^{*}, A(h)\right]^{2}=\left(\|h\|^{4}-|\langle h, \Gamma h\rangle|^{2}\right) 1 .
$$

- From this, argue what the possibilities for the spectrum of $\left[A(h)^{*}, A(h)\right]$ are.
- If $\left[A(h)^{*}, A(h)\right]$ is a multiple of the identity, prove that it is zero.
- If $\left[A(h)^{*}, A(h)\right]$ is not a multiple of the identity, determine the spectrum of the self-adjoint operator $A(h)^{*} A(h)$ using what you know about the spectrum of $\left[A(h)^{*}, A(h)\right]$.
- Complete the proof.

